QGIS and Generic Tools
Inbunden, Engelska, 2018
Av Nicolas Baghdadi, Clément Mallet, Mehrez Zribi, France) Baghdadi, Nicolas (IRSTEA, France) Mallet, Clement (National Institute of Geographic and Forest Information, France) Zribi, Mehrez (CNRS
2 329 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.These four volumes present innovative thematic applications implemented using the open source software QGIS. These are applications that use remote sensing over continental surfaces. The volumes detail applications of remote sensing over continental surfaces, with a first one discussing applications for agriculture. A second one presents applications for forest, a third presents applications for the continental hydrology, and finally the last volume details applications for environment and risk issues.
Produktinformation
- Utgivningsdatum2018-01-09
- Mått165 x 239 x 23 mm
- Vikt590 g
- FormatInbunden
- SpråkEngelska
- Antal sidor310
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781786301871
Tillhör följande kategorier
Nicolas Baghdadi, French Research Institute of Science and Technology for Environment and Agriculture, France Mehrez Zribi, CNRS and CESBIO, France Clément Maillet, ING, France
- Introduction ixChapter 1. Introduction to QGIS 1Nicolas MOYROUD and Frédéric PORTET1.1. History 11.2. QGIS graphical user interface 21.2.1. Standard interface 21.2.2. Settings 31.2.3. Add layer 41.2.4. QGIS project. 51.2.5. Navigation 51.2.6. Attributes of entities 61.3. The processing module, the toolkit for spatial analysis 61.3.1. History and interest of the treatment module 61.3.2. Presentation of the toolbox and its algorithms 71.3.3. Example of an algorithm’s execution 101.3.4. Adding custom Python scripts 111.3.5. The graphic modeler 131.3.6. Batch processing 16Chapter 2. Introduction to GDAL Tools in QGIS 19Kenji OSE2.1. GDAL: The Swiss army knife of raster processing 192.1.1. What is GDAL used for? 192.1.2. Licenses 192.1.3. How is GDAL used? 202.1.4. How GDAL works in QGIS 232.2. GDAL tools: Practical examples 262.2.1. Introduction 262.2.2. Useful data 272.2.3. Reading image metadata 292.2.4. Basic processing of raster files 332.2.5. Analysis tools 442.3. Bibliography 65Chapter 3. GRASS GIS Software with QGIS 67Bernard LACAZE, Julita DUDEK and Jérôme PICARD3.1. Presentation 673.1.1. GRASS software: A modular GIS package 673.1.2. Vector functions (v.*) 683.1.3. GIS raster functions (r.*) 703.1.4. Imagery functions (i.* or r.*) 733.1.5. Temporal functions 743.2. GRASS GIS download and GRASS plugin in QGIS 773.2.1. Operating systems for GRASS GIS software 773.2.2. QGIS interface for GRASS GIS 773.3. GRASS GIS capabilities 793.3.1. Definition of a GRASS GIS project: Location and mapsets 793.3.2. Modifications of the GRASS region 803.3.3. Importing raster data into GRASS 813.3.4. Importing vector data into GRASS 833.3.5. Image georeferencing 843.3.6. Radiometric preprocessing of images 853.3.7. Pan-sharpening 863.3.8. Computation of spectral indices and biophysical parameters 863.3.9. Classifications and segmentation 873.4. Using Grass GIS functions from QGIS 893.4.1. Creating, opening, closing a dataset and adding a raster file 903.4.2. Creating, adding, editing a vector layer 953.4.3. Examples of image processing with QGIS-GRASS 973.5. Acknowledgments 1063.6. Bibliography 106Chapter 4. The Use of SAGA GIS Modules in QGIS 107Paul PASSY and Sylvain THÉRY4.1. SAGA GIS in QGIS 1074.1.1. Development of SAGA GIS 1074.1.2. SAGA GIS interface in QGIS 1084.2. Using SAGA GIS to work with multispectral satellite images 1114.2.1. Methodology 1114.2.2. Acquisition and presentation of used data 1124.2.3. Correction of the satellite images 1124.2.4. Cropping the images according to the study area 1154.2.5. Color composites and exploration of the area 1164.2.6. Calculation of indices in order to extract vegetation and water surfaces 1194.3. Hydrological network extraction using SAGA GIS in QGIS 1314.3.1. Interests 1314.3.2. DEM preprocessing 1324.3.3. Filling sinks 1354.3.4. Hydrographic network extraction 1374.4. Interpolation using SAGA GIS 1404.4.1. Principle of the interpolation 1404.4.2. Interpolation of measures of water quality in the aquifers of the Seine basin 1404.5. Bibliography 148Chapter 5. Orfeo ToolBox Applications 151Rémi CRESSON, Manuel GRIZONNET and Julien MICHEL5.1. The Orfeo ToolBox 1515.1.1. Introduction 1515.1.2. History 1515.1.3. Application features 1535.1.4. Governance and community 1535.1.5. C++ library 1555.1.6. Internal mechanisms 1565.1.7. Download and installation 1585.2. Using OTB applications 1585.2.1. Interface 1585.2.2. Command line interface 1615.2.3. Graphical user interface 1645.2.4. Use from QGIS 1655.2.5. Python bindings 1655.2.6. Monteverdi 1665.3. Exercises 1675.3.1. Basic tools 1675.3.2. Applications for image preprocessing 1905.3.3. Feature extraction applications 2215.3.4. Classification 2315.4. Conclusion 2405.5. Acknowledgments 2405.6. Bibliography 240Chapter 6. Online Publication of a Land Cover Map Using LizMap 243Jean-Baptiste LAURENT and Louise LEROUX6.1. Context 2436.2. Workflow to publish a map online using LizMap 2446.2.1. Presentation of LizMap 2456.2.2. Main steps for publishing a map online with LizMap 2466.3. Implementation with QGIS 2476.3.1. Setup a QGIS project for Web 2476.3.2. Setup a QGIS project for LizMap 2486.3.3. Publish the map by FTP 2516.3.4. Some tips to go further 2536.4. Bibliography 255Chapter 7. GeoHealth and QuickOSM, Two QGIS Plugins for Health Applications 257Vincent HERBRETEAU, Christophe RÉVILLION and Etienne TRIMAILLE7.1. Background on the use of GIS for health and the development of dedicated plugins in QGIS 2577.2. Methodology 2587.2.1. Importing data 2597.2.2. Case geolocation 2607.2.3. Data anonymization (“blurring”) 2607.2.4. Creating an incidence or density map 2627.2.5. Importing data from the OSM database 2627.2.6. Environmental analyses 2647.2.7. Export 2657.3. Implementation: GeoHealth, assisted mapping with QGIS 2677.3.1. Installation of GeoHealth and QuickOSM plugins 2677.3.2. Datasets 2687.3.3. Producing an incidence map with the GeoHealth plugin 2687.3.4. “Blurring” of point data with GeoHealth and QuickOSM plugins 2717.3.5. Example of spatial analyzes for health studies 2777.3.6. Contribution to the OSM database using satellite images 2817.4. Bibliography 286List of Authors 287Index 289Scientific Committee 293