Progress in Nanotechnology
Applications
Inbunden, Engelska, 2010
Av Editor: ACerS, The) ACerS (American Ceramics Society, Acers (American Ceramics Society The)
2 729 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This edition of the Progress in Ceramic Technology series is a select compilation of articles on nanotechnology applications and markets previously published in ACerS publications, including The American Ceramic Society Bulletin, Journal of the American Ceramic Society, International Journal of Applied Ceramic Technology, Ceramic Engineering and Science Proceedings (CESP) and Ceramic Transactions (CT). The American Ceramic Society contributes to the progress of nanotechnology by providing forums for information exchange during its various meetings and by publishing articles in its various journals and proceedings.
Produktinformation
- Utgivningsdatum2010-01-26
- Mått220 x 289 x 26 mm
- Vikt1 037 g
- SpråkEngelska
- Antal sidor350
- Upplaga1
- FörlagJohn Wiley & Sons Inc
- EAN9780470408407
Tillhör följande kategorier
The American Ceramic Society (ACerS) is a 100-year old non-profit organization that serves the informational, educational, and professional needs of the international ceramics community.
- ContentsIntroductionMarket OverviewsRolling Nanotech Out of the Lab and Into the Market 3J. SawyerCeramic Revolution May Yet Arrive via Nanotechnology 9K. BlakelyPowder Market Update: Nanoceramic Applications Emerge 13T. AbrahamBiomedical TechnologyFabrication of Nano-Macro Porous Soda-Lime Phosphosilicate Bioactive Glass by the Melt-Quench Method 19H. M. M. Moawad and H. JainBiological Response Mechanisms to Microparticulate and Nanoparticulate Matter 33M. Chary, R. Baier, P. Nickerson, and J. NatiellaAlumind/Zirconia Micro/Nanocomposites: A New Material for Biomedical Applications With Superior Sliding Wear Resistance 37J. Bartolome, A. De Aza , A. Martin, J. Pastor, J. Llorca, R. Torrecillas, and G. BrunoCreation of Nano-Macro-Interconnected Porosity in a Bioactive Glass-Ceramic by the Melt-Quench-Heat-Etch Method 45H. Moawad and H. JainProcessing and Properties of Nano-Hydroxyapatite(n-HAp)/Poly(Ethylene-Co-Acrylic Acid)(EAA) Composite Using a Phosphonic Acid Coupling Agent for Orthopedic Applications 49N. Pramanik, S. Mohapatra, P. Pramanik, and P. BhargavaHydroxyapatite-Carbon Nanotube Composites for Biomedical Applications: A Review 57A. White, S. Best, and I. KinlochSynthesis and Structural Characterization of Nanoapatite Ceramics Powders for Biomedical Applications 71K. Ando, M. Ohkubo, S. Hayakawa, K. Tsuru, A. Osaka, E. Fujii, K. Kawabata, C. Bonhomme, and F. BabonneauHigh-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina-Yttria-Stabilized Zirconia Nano-Bioceramics 79S. Kim and K. KhalilMerging Biological Self-Assembly with Synthetic Chemical Tailoring: The Potential for 3-D Genetically Engineered Micro/Nano-Devices (3-D GEMS) 85K. Sandhage, S. Allan, M. Dickerson, C. Gaddis, S. Shian, M. Weatherspoon, Y. Cai, G. Ahmad, M. Haluska, R. Snyder, R. Unocic, F. Zalar, Y. Zhang, R. Rapp, M. Hildebrand, and B. PalenikConstruction and ManufacturingEffect of Nanosilica Additions on Belite Cement Pastes Held in Sulfate Solutions 97J. Dolado, I. Campillo, E. Erkizia, J. Ibaiiez, A. Porro, A. Guerrero, and S. GoiiiEffect of Nano-Size Powders on the Microstructure of Ti(C,N)-xWC-Ni Cermets 101J. Jung and S. KangIn Situ Preparation of Si3N,/SiC Nanocomposites for Cutting Tools Application 107P.Sajgalik, M. Hnatko, Z. LenEeS, J. Dusza, and M. KaSiarovaHow Nanotechnology Can Change the Concrete World, Part One 113K. Sobolev and M. GutierrezHow Nanotechnology Can Change the Concrete World, Part Two 117K. Sobolev and M. GutierrezElectronic and Optical DevicesWill Silicon Survive Moore’s Law? 123L. SheppardNanosize Engineered Ferroelectric/Dielectric Single and Multilayer Films for Microwave Applications 129R. Wordenweber, E. Hollmann, M. Ali, J. Schubert, and G. PickartzEffect of Calcination on Crystallinity for Nanostructured Development of Wormhole-Like Mesoporous Tungsten Oxide 137W. Lai, L. Teoh, Y. Su, J. Shieh, and M. HonMg-Cu-Zn Ferrites for Multilayer Inductors 141J. Murbe and J. TopferMicrowave Dielectric Properties of Sintered Alumina Using Nano-Scaled Powders of (Y Alumina and TiO2 149C-L Huang, J-J Wang, and C-Y HuangPbZr0.4Ti0.6O3-Based Reflectors with Tunable Peak Wavelengths 157G. J. Hu, X. K. Hong, A. Y. Liu, J. Chen, J. H. Chu, and N. DaiMorphologies-Controlled Synthesis and Optical Properties of Bismuth Tungstate Nanocrystals by a Low-Temperature Molten Salt Method 159L. Xie, J. Ma, J. Zhou, Z. Zhao, H. Tian, Y. Wang, J. Tao, and X. ZhuSynthesis of High Density and Transparent Forsterite Ceramics Using Nano-Sized Precursors and Their Dielectric Properties 163S. Sano, N. Saito, S. Matsuda, N. Ohashi, H. Haneda, Y. Arita, and M. TakernotoDesign and Nanofabrication of Superconductor Ceramic Strands and Customized Leads 171A. Rokhvarger and L. ChigirinskyBuilt-in Nanostructures in Transparent Oxides for Novel Photonic and Electronic Functions Materials 183H. HosonoEnergy and The EnvironmentPreparation and Characterization of Samaria-Doped Ceria Electrolyte Materials for Solid Oxide Fuel Cells 199Y.-P. Fu, S.-B. Wen, and C.-H. LuDesign of High-Quality Pt-CeO, Composite Anodes Supported by Carbon Black for Direct Methanol Fuel Cell Application 205M. Takahashi, T. Mori, F. Ye, A. Vinu, H. Kobayashi, and J. DrennanRapid Formation of Active Mesoporous TiO, Photocatalysts via Micelle in a Microwave Hydrothermal Process 209H.-W. Wang, C.-H. Kuo, H.-C. Lin, I.-T. Kuo, and C.-F. ChengDevelopment of Visible-Light Photocatalysts by Nitrogen-Doped Titanium Dioxide 215Synthesis of Nanophased Metal Oxides in Supercritical Water: Catalysts for Biomass Conversion 217C. Levy, M. Watanabe, Y. Aizawa, H. Inornata, and K. SueSynthesis and Characterization of Nano-Composite Alumina-Titania Ceramic Membrane for Gas Separation 225A. L. Ahmad, M. R. Othrnan, and N. F. ldrusHydrothermal Synthesis of Nan0 Ce-Zr-Y Oxide Solid Solution for Automotive Three-Way Catalyst 233H. YucaiComparison Between Micrometer- and Nano-Scale Glass Composites for Sealing Solid Oxide Fuel Cells 237M. Brochu, B. D. Gauntt, R. Shah, and R. E. LoehmanPreparation of Nanocrystalline CeO2 by the Precipitation Method and Its Improved Methane Oxidation Activity 245H.-J. Choi, J. Moon, H.-B. Shim, K.-S. Han, E.-G. Lee, and K.-D. JungPreparation and Characterization of Nano-Crystalline LiNi0.5Mn1.5O4 Combustion Reaction Method Cathode Material by the Soft 249Z. Zhao, J. Ma, H. Tian, L. Xie, J. Zhou, P. Wu, Y. Wang, J. Tao, and X. ZhuSynthesis and Characterization of Nano-Hetero-Structured Dy Doped CeO2 Solid Electrolytes Using a Combination of Spark Plasma Sintering and Conventional Sintering 253T. Mori, T. Kobayashi, Y. Wang, J. Drennan, T. Nishimura, J-G Li, and H. Kobayashi Fabrication and Performance of Impregnated Ni Anodes of Solid Oxide Fuel Cells 257S. Jiang, S. Zhang, Y. Zhen, and W. WangAdvances in Nano-Structured Electrochemical Reactors for NOx Treatment in the Presence of Oxygen 265M. Awano, Y. Fujishiro, K. Hamamoto, S. Katayama, and S. BredikhinSensorsPrussian Blue Nanoparticles Encapsulated Within Ormosil Film 277P. Pandey and B. SinghHigh-Yield Synthesis of Nanocrystalline Tin Dioxide by Thermal Decomposition for Use in Gas Sensors 293C. Agashe, R. Aiyer, and A. GarajeEffect of Firing Temperature on Electrical and Gas-Sensing Properties of Nano-Sn0,-Based Thick-Film Resistors 301A. Garje and R. AiyerPreparation of Ru-C Nano-Composite Films and Their Electrode Properties for Oxygen Sensors 309T. Kimura and T. GotoElectrical and Gas-Sensing Properties of a Thick Film Resistor of Nanosized SnO2 with Variable Percentage of Permanent Binder 317A. D. Garje and R. C. AiyerNon-Nernstian Planar Sensors Based on YSZ with Ta (1 0 at.%)-Doped Nanosized Titania as a Sensing Electrode for High-Temperature Applications 325L. Chevalier, M.Grilli, E. Di Bartolomeo, and E. TraversaImprovement of NO2 a Sensing Performances by an Additional Second Component to the Nano- Structured NiO Sensing Electrode of a YSZ-Based Mixed-Potential-Type Sensor 333V. Plashnitsa, T. Ueda, and N. Miura