Process Systems and Materials for CO2 Capture
Modelling, Design, Control and Integration
Inbunden, Engelska, 2017
Av Athanasios I. Papadopoulos, Panos Seferlis, Athanasios I Papadopoulos
3 789 kr
Beställningsvara. Skickas inom 11-20 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This comprehensive volume brings together an extensive collection of systematic computer-aided tools and methods developed in recent years for CO2 capture applications, and presents a structured and organized account of works from internationally acknowledged scientists and engineers, through: Modeling of materials and processes based on chemical and physical principlesDesign of materials and processes based on systematic optimization methodsUtilization of advanced control and integration methods in process and plant-wide operationsThe tools and methods described are illustrated through case studies on materials such as solvents, adsorbents, and membranes, and on processes such as absorption / desorption, pressure and vacuum swing adsorption, membranes, oxycombustion, solid looping, etc.Process Systems and Materials for CO2 Capture: Modelling, Design, Control and Integration should become the essential introductory resource for researchers and industrial practitioners in the field of CO2 capture technology who wish to explore developments in computer-aided tools and methods. In addition, it aims to introduce CO2 capture technologies to process systems engineers working in the development of general computational tools and methods by highlighting opportunities for new developments to address the needs and challenges in CO2 capture technologies.
Produktinformation
- Utgivningsdatum2017-04-21
- Mått175 x 249 x 38 mm
- Vikt0 g
- SpråkEngelska
- Antal sidor680
- FörlagJohn Wiley & Sons Inc
- EAN9781119106449
Tillhör följande kategorier
Edited byATHANASIOS I. PAPADOPOULOS, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Greece PANOS SEFERLIS, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Greece
- About the Editors xviiList of Contributors xixPreface xxviiSection 1 Modelling and Design of Materials 11 The Development of a Molecular Systems Engineering Approach to the Design of Carbon‐capture Solvents 3Edward Graham, Smitha Gopinath, Esther Forte, George Jackson, Amparo Galindo, and Claire S. Adjiman1.1 Introduction 31.2 Predictive Thermodynamic Models for the Integrated Molecular and Process Design of Physical Absorption Processes 61.3 Describing Chemical Equilibria with SAFT 161.4 Integrated Computer‐aided Molecular and Process Design using SAFT 241.5 Conclusions 29List of Abbreviations 30Acknowledgments 31References 312 Methods and Modelling for Post‐combustion CO2 Capture 43Philip Fosbøl, Nicolas von Solms, Arne Gladis, Kaj Thomsen, and Georgios M. Kontogeorgis2.1 Introduction to Post‐combustion CO2 Capture: The Role of Solvents and Some Engineering Challenges 432.2 Extended UNIQUAC: A Successful Thermodynamic Model for CCS Applications 492.3 CO2 Capture using Alkanolamines: Thermodynamics and Design 602.4 CO2 Capture using Ammonia: Thermodynamics and Design 612.5 New Solvents: Enzymes, Hydrates, Phase Change Solvents 622.6 Pilot Plant Studies: Measurements and Modelling 692.7 Conclusions and Future Perspectives 69List of Abbreviations 74Acknowledgements 74References 743 Molecular Simulation Methods for CO2 Capture and Gas Separation with Emphasis on Ionic Liquids 79Niki Vergadou, Eleni Androulaki, and Ioannis G. Economou3.1 Introduction 793.2 Molecular Simulation Methods for Property Calculations 833.3 Force Fields 853.4 Results and Discussion: The Case of the IOLICAP Project 873.5 Future Outlook 101List of Abbreviations 102Acknowledgments 103References 1034 Thermodynamics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 113Peter T. Frailie, Jorge M. Plaza, and Gary T. Rochelle4.1 Introduction 1134.2 Model Description 1144.3 Sequential Regression Methodology 1154.4 Model Regression 1154.5 Conclusions 134List of Abbreviations 134Acknowledgements 134References 1355 Kinetics of Aqueous Methyldiethanolamine/Piperazine for CO2 Capture 137Peter T. Frailie and Gary T. Rochelle5.1 Introduction 1375.2 Methodology 1385.3 Results 1435.4 Conclusions 150List of Abbreviations 151Acknowledgements 151References 1516 Uncertainties in Modelling the Environmental Impact of Solvent Loss through Degradation for Amine Screening Purposes in Post‐combustion CO2 Capture 153Sara Badr, Stavros Papadokonstantakis, Robert Bennett, Graeme Puxty, and Konrad Hungerbuehler6.1 Introduction 1536.2 Oxidative Degradation 1566.3 Environmental Impacts of Solvent Production 1656.4 Conclusions and Outlook 167List of Abbreviations 168References 1697 Computer‐aided Molecular Design of CO2 Capture Solvents and Mixtures 173Athanasios I. Papadopoulos, Theodoros Zarogiannis, and Panos Seferlis7.1 Introduction 1737.2 Overview of Associated Literature 1767.3 Optimization‐based Design and Selection Approach 1787.4 Implementation 1837.5 Results and Discussion 1877.6 Conclusions 196List of Abbreviations 196Acknowledgements 197References 1978 Ionic Liquid Design for Biomass‐based Tri‐generation System with Carbon Capture 203Fah Keen Chong, Viknesh Andiappan, Fadwa T. Eljack, Dominic C. Y. Foo, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng8.1 Introduction 2038.2 Formulations to Design Ionic Liquid for BECCS 2058.3 An Illustrative Example 2128.4 Conclusions 221List of Abbreviations 222References 225Section 2 From Materials to Process Modelling, Design and Intensification 2299 Multi‐scale Process Systems Engineering for Carbon Capture, Utilization, and Storage: A Review 231M. M. Faruque Hasan9.1 Introduction 2319.2 Multi‐scale Approaches for CCUS Design and Optimization 2339.3 Hierarchical Approaches 2349.4 Simultaneous Approaches 2379.5 Enabling Methods, Challenges, and Research Opportunities 242List of Abbreviations 243References 24410 Membrane System Design for CO2 Capture: From Molecular Modeling to Process Simulation 249Xuezhong He, Daniel R. Nieto, Arne Lindbråthen, and May‐Britt Hägg10.1 Introduction 24910.2 Membranes for Gas Separation 25010.3 Molecular Modeling of Gas Separation in Membranes 25510.4 Process Simulation of Membranes for CO2 Capture 26010.5 Future Perspectives 273List of Abbreviations 274Acknowledgments 276References 27611 Post‐combustion CO2 Capture by Chemical Gas–Liquid Absorption: Solvent Selection, Process Modelling, Energy Integration and Design Methods 283Thibaut Neveux, Yann Le Moullec, and Éric Favre11.1 Introduction 28311.2 Solvent Influence 28411.3 Process Modelling 28611.4 Process Integration 29111.5 Design Method 30011.6 Conclusion 306List of Abbreviations 308References 30812 Innovative Computational Tools and Models for the Design, Optimization and Control of Carbon Capture Processes 311David C. Miller, Deb Agarwal, Debangsu Bhattacharyya, Joshua Boverhof , Yang Chen, John Eslick, Jim Leek, Jinliang Ma, Priyadarshi Mahapatra, Brenda Ng, Nikolaos V. Sahinidis, Charles Tong, and Stephen E. Zitney12.1 Overview 31112.2 Advanced Computational Frameworks 31312.3 Case Study: Solid Sorbent Carbon Capture System 32612.4 Summary 335Acknowledgment 338List of Abbreviations 338References 33913 Modelling and Optimization of Pressure Swing Adsorption (PSA) Processes for Post‐combustion CO2 Capture from Flue Gas 343George N. Nikolaidis, Eustathios S. Kikkinides, and Michael C. Georgiadis13.1 Introduction 34313.2 Mathematical Model Formulation 34613.3 PSA/VSA Simulation Case Studies 35213.4 PSA/VSA Optimization Case Study 35913.5 Conclusions 362List of Abbreviations 365Acknowledgements 366References 36714 Joule Thomson Effect in a Two‐dimensional Multi‐component Radial Crossflow Hollow Fiber Membrane Applied for CO2 Capture in Natural Gas Sweetening 371Serene Sow Mun Lock, Kok Keong Lau, Azmi Mohd Shariff, and Yin Fong Yeong14.1 Introduction 37114.2 Methodology 37314.3 Results and Discussion 38414.4 Conclusion 393List of Abbreviations 394Acknowledgments 394References 39415 The Challenge of Reducing the Size of an Absorber Using a Rotating Packed Bed 399Ming‐Tsz Chen, David Shan Hill Wong, and Chung Sung Tan15.1 Motivation for Size Reduction 39915.2 Rotating Packed Bed Technology 40115.3 Experimental Work on CO2 Capture Using a Rotating Packed Bed 40515.4 Modeling of CO2 Capture using a Rotating Packed Bed 40915.5 Design of Rotating Packed Bed Absorbers and Real Work Comparison to Regular Packed Absorbers 41015.6 Conclusions 417List of Abbreviations 417References 418Section 3 Process Operation and Control 42516 Plantwide Design and Operation of CO2 Capture Using Chemical Absorption 427David Shan Hill Wong and Shi‐Shang Jang16.1 Introduction 42716.2 The Basic Process 42816.3 Solvent Selection 42916.4 Energy Consumption Targets 42916.5 Steady‐state Process Modeling 43116.6 Conceptual Process Integration 43216.7 Column Internals 43216.8 Dynamic Modeling 43316.9 Plantwide Control 43416.10 Flexible Operation 43416.11 Water and Amine Management 43516.12 SOx Treatment 43616.13 Monitoring 43616.14 Conclusions 437List of Abbreviations 437References 43717 Multi‐period Design of Carbon Capture Systems for Flexible Operation 447Nial Mac Dowell and Nilay Shah17.1 Introduction 44717.2 Evaluation of Flexible Operation 45117.3 Scenario Comparison 45717.4 Conclusions 459List of Abbreviations 460Acknowledgements 460References 46118 Improved Design and Operation of Post‐combustion CO2 Capture Processes with Process Modelling 463Adekola Lawal, Javier Rodriguez, Alfredo Ramos, Gerardo Sanchis, Mario Calado, Nouri Samsatli, Eni Oko, and Meihong Wang18.1 Introduction 46318.2 The gCCS Whole‐chain System Modelling Environment 46418.3 Typical Process Design Considerations in a Simulation Study 46718.4 Safety Considerations: Anticipating Hazards 47718.5 Process Operating Considerations 47918.6 Conclusions 497List of Abbreviations 498References 49819 Advanced Control Strategies for IGCC Plants with Membrane Reactors for CO2 Capture 501Fernando V. Lima, Xin He, Rishi Amrit, and Prodromos Daoutidis19.1 Introduction 50119.2 Modelling Approach 50319.3 Design and Simulation Conditions 50719.4 Model Predictive Control Strategies 50819.5 Closed‐loop Simulation Results 51219.6 Conclusions 518List of Abbreviations 518Acknowledgements 519References 51920 An Integration Framework for CO2 Capture Processes 523M. Hossein Sahraei and Luis A. Ricardez-Sandoval20.1 Introduction 52320.2 Automation Framework and Syntax 52520.3 CO2 Capture Plant Model 52820.4 Case Studies 53020.5 Conclusions 540List of Abbreviations 541References 54121 Operability Analysis in Solvent‐based Post‐combustion CO2 Capture Plants 545Theodoros Damartzis, Athanasios I. Papadopoulos, and Panos Seferlis21.1 Introduction 54521.2 Framework for the Analysis of Operability 54821.3 Framework Implementation 55221.4 Results and Discussion 55621.5 Conclusions 566List of Abbreviations 567Acknowledgments 567References 567Section 4 Integrated Technologies 57122 Process Systems Engineering for Optimal Design and Operation of Oxycombustion 573Alexander Mitsos22.1 Introduction 57322.2 Pressurized Oxycombustion of Coal 57522.3 Membrane‐based Processes 57822.4 Conclusions and Future Work 585List of Abbreviations 585Acknowledgments 585References 58623 Energy Integration of Processes for Solid Looping CO2 Capture Systems 589Pilar Lisbona, Yolanda Lara, Ana Martínez, and Luis M. Romeo23.1 Introduction 58923.2 Internal Integration for Energy Savings 59223.3 External Integration for Energy Use 59723.4 Process Symbiosis 60123.5 Final Remarks 605List of Abbreviations 605References 60524 Process Simulation of a Dual‐stage Selexol Process for Pre‐combustion Carbon Capture at an Integrated Gasification Combined Cycle Power Plant 609Hyungwoong Ahn24.1 Introduction 60924.2 Configuration of an Absorption Process for Pre‐combustion Carbon Capture 61024.3 Solubility Model 61624.4 Conventional Dual‐stage Selexol Process 61924.5 Unintegrated Solvent Cycle Design 62424.6 95% Carbon Capture Efficiency 62524.7 Conclusions 626List of Abbreviations 627References 62725 Optimized Lignite‐fired Power Plants with Post‐combustion CO2 Capture 629Emmanouil K. Kakaras, Antonios K. Koumanakos, and Aggelos F. Doukelis25.1 Introduction 62925.2 Reducing the Energy Efficiency Penalty 63025.3 Optimized Plants with Amine Scrubbing: Greenfield Case 63125.4 Oxyfuel and Amine Scrubbing Hybrid CO2 Capture 63525.5 Conclusions 645List of Abbreviations 645References 645Index 649