Problem of Catalan
Inbunden, Engelska, 2014
709 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In other words, 32 – 23 = 1 is the only solution of the equation xp – yq = 1 in integers x, y, p, q with xy ≠ 0 and p, q ≥ 2.In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume a very modest background:a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory.
Produktinformation
- Utgivningsdatum2014-10-27
- Mått155 x 235 x 20 mm
- Vikt559 g
- FormatInbunden
- SpråkEngelska
- Antal sidor245
- Upplaga2014
- FörlagSpringer International Publishing AG
- ISBN9783319100937