Principles of Communications
Häftad, Engelska, 2014
3 719 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Ziemer and Tranter provide a thorough treatment of the principles of communications at the physical layer suitable for college seniors, beginning graduate students, and practicing engineers. This is accomplished by providing overviews of the necessary background in signal, system, probability, and random process theory required for the analog and digital communications topics covered in the book. In addition to stressing fundamental concepts, the seventh edition features sections on important areas such as spread spectrum, cellular communications, and orthogonal frequency-division multiplexing. While the book is aimed at a two-semester course, more than enough material is provided for structuring courses according to students need and instructor preference.
Produktinformation
- Utgivningsdatum2014-06-10
- Mått188 x 234 x 23 mm
- Vikt1 066 g
- FormatHäftad
- SpråkEngelska
- Antal sidor752
- Upplaga7
- FörlagJohn Wiley & Sons Inc
- ISBN9781118078914
Tillhör följande kategorier
Dr. Rodger E. Ziemer recieved his B.S., M.S., and Ph.D. degrees from the University of Minnesota from 1960 to 1965. He joined the University of Colorado at Colorado Springs in 1984 as Chairman and Professor in the ECE Department. In conjunction, Dr. Ziemer worked as the Program director for Communications Research for the National Science Foundation from 1998 to 2001. In May of 2008 he was appointed Professor Emeritus.William H. Tranter is the author of Principles of Communications, 7th Edition, published by Wiley.
- CHAPTER 1 INTRODUCTION 11.1 The Block Diagram of a Communication System 41.2 Channel Characteristics 51.2.1 Noise Sources 51.2.2 Types of Transmission Channels 71.3 Summary of Systems-Analysis Techniques 131.3.1 Time and Frequency-Domain Analyses 131.3.2 Modulation and Communication Theories 131.4 Probabilistic Approaches to System Optimization 141.4.1 Statistical Signal Detection and EstimationTheory 141.4.2 Information Theory and Coding 151.4.3 Recent Advances 161.5 Preview of This Book 16Further Reading 16CHAPTER 2 SIGNAL AND LINEAR SYSTEM ANALYSIS 172.1 Signal Models 172.1.1 Deterministic and Random Signals 172.1.2 Periodic and Aperiodic Signals 182.1.3 Phasor Signals and Spectra 182.1.4 Singularity Functions 212.2 Signal Classifications 242.3 Fourier Series 262.3.1 Complex Exponential Fourier Series 262.3.2 Symmetry Properties of the Fourier Coefficients 272.3.3 Trigonometric Form of the Fourier Series 282.3.4 Parseval’s Theorem 282.3.5 Examples of Fourier Series 292.3.6 Line Spectra 302.4 The Fourier Transform 342.4.1 Amplitude and Phase Spectra 352.4.2 Symmetry Properties 362.4.3 Energy Spectral Density 372.4.4 Convolution 382.4.5 Transform Theorems: Proofs and Applications 402.4.6 Fourier Transforms of Periodic Signals 482.4.7 Poisson Sum Formula 502.5 Power Spectral Density and Correlation 502.5.1 The Time-Average Autocorrelation Function 512.5.2 Properties of 𝑅(𝜏) 522.6 Signals and Linear Systems 552.6.1 Definition of a Linear Time-Invariant System 562.6.2 Impulse Response and the SuperpositionIntegral 562.6.3 Stability 582.6.4 Transfer (Frequency Response) Function 582.6.5 Causality 582.6.6 Symmetry Properties of 𝐻(𝑓) 592.6.7 Input-Output Relationships for Spectral Densities 622.6.8 Response to Periodic Inputs 622.6.9 Distortionless Transmission 642.6.10 Group and Phase Delay 642.6.11 Nonlinear Distortion 672.6.12 Ideal Filters 682.6.13 Approximation of Ideal Lowpass Filters by Realizable Filters 702.6.14 Relationship of Pulse Resolution and Risetime to Bandwidth 752.7 Sampling Theory 782.8 The Hilbert Transform 822.8.1 Definition 822.8.2 Properties 832.8.3 Analytic Signals 852.8.4 Complex Envelope Representation of Bandpass Signals 872.8.5 Complex Envelope Representation of Bandpass Systems 892.9 The Discrete Fourier Transform and Fast Fourier Transform 91Further Reading 95Summary 95Drill Problems 98Problems 100Computer Exercises 111CHAPTER 3 LINEAR MODULATION TECHNIQUES 1123.1 Double-Sideband Modulation 1133.2 Amplitude Modulation (AM) 1163.2.1 Envelope Detection 1183.2.2 The Modulation Trapezoid 1223.3 Single-Sideband (SSB) Modulation 1243.4 Vestigial-Sideband (VSB) Modulation 1333.5 Frequency Translation and Mixing 1363.6 Interference in Linear Modulation 1393.7 Pulse Amplitude Modulation---PAM 1423.8 Digital Pulse Modulation 1443.8.1 Delta Modulation 1443.8.2 Pulse-Code Modulation 1463.8.3 Time-Division Multiplexing 1473.8.4 An Example: The Digital Telephone System 149Further Reading 150Summary 150Drill Problems 151Problems 152Computer Exercises 155CHAPTER 4 ANGLE MODULATION ANDMULTIPLEXING 1564.1 Phase and Frequency Modulation Defined 1564.1.1 Narrowband Angle Modulation 1574.1.2 Spectrum of an Angle-Modulated Signal 1614.1.3 Power in an Angle-Modulated Signal 1684.1.4 Bandwidth of Angle-Modulated Signals 1684.1.5 Narrowband-to-Wideband Conversion 1734.2 Demodulation of Angle-Modulated Signals 1754.3 Feedback Demodulators: The Phase-Locked Loop 1814.3.1 Phase-Locked Loops for FM and PM Demodulation 1814.3.2 Phase-Locked Loop Operation in the Tracking Mode: The Linear Model 1844.3.3 Phase-Locked Loop Operation in the Acquisition Mode 1894.3.4 Costas PLLs 1944.3.5 Frequency Multiplication and Frequency Division 1954.4 Interference in Angle Modulation 1964.5 Analog Pulse Modulation 2014.5.1 Pulse-Width Modulation (PWM) 2014.5.2 Pulse-Position Modulation (PPM) 2034.6 Multiplexing 2044.6.1 Frequency-Division Multiplexing 2044.6.2 Example of FDM: Stereophonic FM Broadcasting 2054.6.3 Quadrature Multiplexing 2064.6.4 Comparison of Multiplexing Schemes 207Further Reading 208Summary 208Drill Problems 209Problems 210Computer Exercises 213CHAPTER 5 PRINCIPLES OF BASEBAND DIGITAL DATATRANSMISSION 2155.1 Baseband Digital Data Transmission Systems 2155.2 Line Codes and Their Power Spectra 2165.2.1 Description of Line Codes 2165.2.2 Power Spectra for Line-Coded Data 2185.3 Effects of Filtering of Digital Data---ISI 2255.4 Pulse Shaping: Nyquist’s Criterion for Zero ISI 2275.4.1 Pulses Having the Zero ISI Property 2285.4.2 Nyquist’s Pulse-Shaping Criterion 2295.4.3 Transmitter and Receiver Filters for Zero ISI 2315.5 Zero-Forcing Equalization 2335.6 Eye Diagrams 2375.7 Synchronization 2395.8 Carrier Modulation of Baseband Digital Signals 243Further Reading 244Summary 244Drill Problems 245Problems 246Computer Exercises 249CHAPTER 6 OVERVIEW OF PROBABILITY AND RANDOMVARIABLES 2506.1 What is Probability? 2506.1.1 Equally Likely Outcomes 2506.1.2 Relative Frequency 2516.1.3 Sample Spaces and the Axioms of Probability 2526.1.4 Venn Diagrams 2536.1.5 Some Useful Probability Relationships 2536.1.6 Tree Diagrams 2576.1.7 Some More General Relationships 2596.2 Random Variables and Related Functions 2606.2.1 Random Variables 2606.2.2 Probability (Cumulative) Distribution Functions 2626.2.3 Probability-Density Function 2636.2.4 Joint cdfs and pdfs 2656.2.5 Transformation of Random Variables 2706.3 Statistical Averages 2746.3.1 Average of a Discrete Random Variable 2746.3.2 Average of a Continuous Random Variable 2756.3.3 Average of a Function of a Random Variable 2756.3.4 Average of a Function of More Than One Random Variable 2776.3.5 Variance of a Random Variable 2796.3.6 Average of a Linear Combination of 𝑁Random Variables 2806.3.7 Variance of a Linear Combination of Independent Random Variables 2816.3.8 Another Special Average---The Characteristic Function 2826.3.9 The pdf of the Sum of Two Independent Random Variables 2836.3.10 Covariance and the Correlation Coefficient 2856.4 Some Useful pdfs 2866.4.1 Binomial Distribution 2866.4.2 Laplace Approximation to the Binomial Distribution 2886.4.3 Poisson Distribution and Poisson Approximation to the Binomial Distribution 2896.4.4 Geometric Distribution 2906.4.5 Gaussian Distribution 2916.4.6 Gaussian 𝑄-Function 2956.4.7 Chebyshev’s Inequality 2966.4.8 Collection of Probability Functions and Their Means and Variances 296Further Reading 298Summary 298Drill Problems 300Problems 301Computer Exercises 307CHAPTER 7 RANDOM SIGNALS AND NOISE 3087.1 A Relative-Frequency Description of Random Processes 3087.2 Some Terminology of Random Processes 3107.2.1 Sample Functions and Ensembles 3107.2.2 Description of Random Processes in Terms of Joint pdfs 3117.2.3 Stationarity 3117.2.4 Partial Description of Random Processes: Ergodicity 3127.2.5 Meanings of Various Averages for Ergodic Processes 3157.3 Correlation and Power Spectral Density 3167.3.1 Power Spectral Density 3167.3.2 The Wiener--Khinchine Theorem 3187.3.3 Properties of the Autocorrelation Function 3207.3.4 Autocorrelation Functions for Random Pulse Trains 3217.3.5 Cross-Correlation Function and Cross-Power Spectral Density 3247.4 Linear Systems and Random Processes 3257.4.1 Input-Output Relationships 3257.4.2 Filtered Gaussian Processes 3277.4.3 Noise-Equivalent Bandwidth 3297.5 Narrowband Noise 3337.5.1 Quadrature-Component and Envelope-Phase Representation 3337.5.2 The Power Spectral Density Function of 𝑛𝑐(𝑡) and𝑛𝑠(𝑡) 3357.5.3 Ricean Probability Density Function 338Further Reading 340Summary 340Drill Problems 341Problems 342Computer Exercises 348CHAPTER 8 NOISE IN MODULATION SYSTEMS 3498.1 Signal-to-Noise Ratios 3508.1.1 Baseband Systems 3508.1.2 Double-Sideband Systems 3518.1.3 Single-Sideband Systems 3538.1.4 Amplitude Modulation Systems 3558.1.5 An Estimator for Signal-to-Noise Ratios 3618.2 Noise and Phase Errors in Coherent Systems 3668.3 Noise in Angle Modulation 3708.3.1 The Effect of Noise on the Receiver Input 3708.3.2 Demodulation of PM 3718.3.3 Demodulation of FM: Above Threshold Operation 3728.3.4 Performance Enhancement through the Use ofDe-emphasis 3748.4 Threshold Effect in FM Demodulation 3768.4.1 Threshold Effects in FM Demodulators 3768.5 Noise in Pulse-Code Modulation 3848.5.1 Postdetection SNR 3848.5.2 Companding 387Further Reading 389Summary 389Drill Problems 391Problems 391Computer Exercises 394CHAPTER 9 PRINCIPLES OF DIGITAL DATA TRANSMISSIONIN NOISE 3969.1 Baseband Data Transmission in White Gaussian Noise 3989.2 Binary Synchronous Data Transmission with Arbitrary Signal Shapes 4049.2.1 Receiver Structure and Error Probability 4049.2.2 The Matched Filter 4079.2.3 Error Probability for the Matched-Filter Receiver 4109.2.4 Correlator Implementation of the Matched-Filter Receiver 4139.2.5 Optimum Threshold 4149.2.6 Nonwhite (Colored) Noise Backgrounds 4149.2.7 Receiver Implementation Imperfections 4159.2.8 Error Probabilities for Coherent Binary Signaling 4159.3 Modulation Schemes not Requiring Coherent References 4219.3.1 Differential Phase-Shift Keying (DPSK) 4229.3.2 Differential Encoding and Decoding of Data 4279.3.3 Noncoherent FSK 4299.4 M-ary Pulse-Amplitude Modulation (PAM) 4319.5 Comparison of Digital Modulation Systems 4359.6 Noise Performance of Zero-ISI Digital Data Transmission Systems 4389.7 Multipath Interference 4439.8 Fading Channels 4499.8.1 Basic Channel Models 4499.8.2 Flat-Fading Channel Statistics and Error Probabilities 4509.9 Equalization 4559.9.1 Equalization by Zero-Forcing 4559.9.2 Equalization by MMSE 4599.9.3 Tap Weight Adjustment 463Further Reading 466Summary 466Drill Problems 468Problems 469Computer Exercises 476CHAPTER 10 ADVANCED DATA COMMUNICATIONSTOPICS 47710.1 M-ary Data Communications Systems 47710.1.1 M-ary Schemes Based on Quadrature Multiplexing 47710.1.2 OQPSK Systems 48110.1.3 MSK Systems 48210.1.4 M-ary Data Transmission in Terms of Signal Space 48910.1.5 QPSK in Terms of Signal Space 49110.1.6 M-ary Phase-Shift Keying 49310.1.7 Quadrature-Amplitude Modulation (QAM) 49510.1.8 Coherent FSK 49710.1.9 Noncoherent FSK 49810.1.10 Differentially Coherent Phase-Shift Keying 50210.1.11 Bit Error Probability from Symbol Error Probability 50310.1.12 Comparison of M-ary Communications Systems on the Basis of Bit Error Probability 50510.1.13 Comparison of M-ary Communications Systems on the Basis of Bandwidth Efficiency 50810.2 Power Spectra for Digital Modulation 51010.2.1 Quadrature Modulation Techniques 51010.2.2 FSK Modulation 51410.2.3 Summary 51610.3 Synchronization 51610.3.1 Carrier Synchronization 51710.3.2 Symbol Synchronization 52010.3.3 Word Synchronization 52110.3.4 Pseudo-Noise (PN) Sequences 52410.4 Spread-Spectrum Communication Systems 52810.4.1 Direct-Sequence Spread Spectrum 53010.4.2 Performance of DSSS in CW Interference Environments 53210.4.3 Performance of Spread Spectrum in Multiple User Environments 53310.4.4 Frequency-Hop Spread Spectrum 53610.4.5 Code Synchronization 53710.4.6 Conclusion 53910.5 Multicarrier Modulation and Orthogonal Frequency-Division Multiplexing 54010.6 Cellular Radio Communication Systems 54510.6.1 Basic Principles of Cellular Radio 54610.6.2 Channel Perturbations in Cellular Radio 55010.6.3 Multiple-Input Multiple-Output (MIMO) Systems---Protection Against Fading 55110.6.4 Characteristics of 1G and 2G Cellular Systems 55310.6.5 Characteristics of cdma2000 and W-CDMA 55310.6.6 Migration to 4G 555Further Reading 556Summary 556Drill Problems 557Problems 558Computer Exercises 563CHAPTER 11 OPTIMUM RECEIVERS AND SIGNAL-SPACECONCEPTS 56411.1 Bayes Optimization 56411.1.1 Signal Detection versus Estimation 56411.1.2 Optimization Criteria 56511.1.3 Bayes Detectors 56511.1.4 Performance of Bayes Detectors 56911.1.5 The Neyman-Pearson Detector 57211.1.6 Minimum Probability of Error Detectors 57311.1.7 The Maximum a Posteriori (MAP) Detector 57311.1.8 Minimax Detectors 57311.1.9 The M-ary Hypothesis Case 57311.1.10 Decisions Based on Vector Observations 57411.2 Vector Space Representation of Signals 57411.2.1 Structure of Signal Space 57511.2.2 Scalar Product 57511.2.3 Norm 57611.2.4 Schwarz’s Inequality 57611.2.5 Scalar Product of Two Signals in Terms of Fourier Coefficients 57811.2.6 Choice of Basis Function Sets---The Gram--Schmidt Procedure 57911.2.7 Signal Dimensionality as a Function of Signal Duration 58111.3 Map Receiver for Digital Data Transmission 58311.3.1 Decision Criteria for Coherent Systems in Terms of Signal Space 58311.3.2 Sufficient Statistics 58911.3.3 Detection of𝑀-ary Orthogonal Signals 59011.3.4 A Noncoherent Case 59211.4 Estimation Theory 59611.4.1 Bayes Estimation 59611.4.2 Maximum-Likelihood Estimation 59811.4.3 Estimates Based onMultiple Observations 59911.4.4 Other Properties of ML Estimates 60111.4.5 Asymptotic Qualities of ML Estimates 60211.5 Applications of Estimation Theory to Communications 60211.5.1 Pulse-Amplitude Modulation (PAM) 60311.5.2 Estimation of Signal Phase: The PLL Revisited 604Further Reading 606Summary 607Drill Problems 607Problems 608Computer Exercises 614CHAPTER 12 INFORMATION THEORY AND CODING 61512.1 Basic Concepts 61612.1.1 Information 61612.1.2 Entropy 61712.1.3 Discrete Channel Models 61812.1.4 Joint and Conditional Entropy 62112.1.5 Channel Capacity 62212.2 Source Coding 62612.2.1 An Example of Source Coding 62712.2.2 Several Definitions 63012.2.3 Entropy of an Extended Binary Source 63112.2.4 Shannon--Fano Source Coding 63212.2.5 Huffman Source Coding 63212.3 Communication in Noisy Environments: Basic Ideas 63412.4 Communication in Noisy Channels: Block Codes 63612.4.1 Hamming Distances and Error Correction 63712.4.2 Single-Parity-Check Codes 63812.4.3 Repetition Codes 63912.4.4 Parity-Check Codes for Single Error Correction 64012.4.5 Hamming Codes 64412.4.6 Cyclic Codes 64512.4.7 The Golay Code 64712.4.8 Bose--Chaudhuri--Hocquenghem (BCH) Codes and Reed Solomon Codes 64812.4.9 Performance Comparison Techniques 64812.4.10 Block Code Examples 65012.5 Communication in Noisy Channels: Convolutional Codes 65712.5.1 Tree and Trellis Diagrams 65912.5.2 The Viterbi Algorithm 66112.5.3 Performance Comparisons for Convolutional Codes 66412.6 Bandwidth and Power Efficient Modulation (TCM) 66812.7 Feedback Channels 67212.8 Modulation and Bandwidth Efficiency 67612.8.1 Bandwidth and SNR 67712.8.2 Comparison of Modulation Systems 67812.9 Quick Overviews 67912.9.1 Interleaving and Burst-Error Correction 67912.9.2 Turbo Coding 68112.9.3 Source Coding Examples 68312.9.4 Digital Television 685Further Reading 686Summary 686Drill Problems 688Problems 688Computer Exercises 692APPENDIX A PHYSICAL NOISE SOURCES 693A.1 Physical Noise Sources 693A.1.1 Thermal Noise 693A.1.2 Nyquist’s Formula 695A.1.3 Shot Noise 695A.1.4 Other Noise Sources 696A.1.5 Available Power 696A.1.6 Frequency Dependence 697A.1.7 Quantum Noise 697A.2 Characterization of Noise in Systems 698A.2.1 Noise Figure of a System 699A.2.2 Measurement of Noise Figure 700A.2.3 Noise Temperature 701A.2.4 Effective Noise Temperature 702A.2.5 Cascade of Subsystems 702A.2.6 Attenuator Noise Temperature and Noise Figure 704A.3 Free-Space Propagation Example 705Further Reading 708Problems 708APPENDIX B JOINTLY GAUSSIAN RANDOM VARIABLES 710B.1 The pdf 710B.2 The Characteristic Function 711B.3 Linear Transformations 711APPENDIX C PROOF OF THE NARROWBAND NOISEMODEL 712APPENDIX D ZERO-CROSSING AND ORIGIN ENCIRCLEMENTSTATISTICS 714D.1 The Zero-Crossing Problem 714D.2 Average Rate of Zero Crossings 716Problems 719APPENDIX E CHI-SQUARE STATISTICS 720APPENDIX F MATHEMATICAL AND NUMERICAL TABLES 722F.1 The Gaussian Q-Function 722F.2 Trigonometric Identities 724F.3 Series Expansions 724F.4 Integrals 725F.4.1 Indefinite 725F.4.2 Definite 726F.5 Fourier-Transform Pairs 727F.6 Fourier-Transform Theorems 727APPENDIX G ANSWERS TO DRILL PROBLEMSwww.wiley.com/college/ziemerBIBLIOGRAPHYwww.wiley.com/college/ziemerINDEX 728