Principles and Applications of Fermentation Technology
Inbunden, Engelska, 2019
3 019 kr
Produktinformation
- Utgivningsdatum2019-04-05
- Mått10 x 10 x 10 mm
- Vikt454 g
- FormatInbunden
- SpråkEngelska
- Antal sidor480
- FörlagJohn Wiley & Sons Inc
- ISBN9781119460268
Tillhör följande kategorier
Arindam Kuila is an Assistant Professor at the Department of Bioscience & Biotechnology, Banasthali University, Rajasthan. He obtained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013. He is the co-editor of "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017), co-author of at least 11 peer-reviewed journals papers and 5 patents. Vinay Sharma is Dean, Faculty of Science & Technology and Chair, Department of Bioscience & Biotechnology at Banasthali University, India. He has over 30 years of teaching and research experience and has published more than 250 research papers (including 31 as conference proceedings/ book chapters). He has also authored/edited 6 books including "Lignocellulosic Biomass Production and Industrial Applications" (Wiley-Scrivener 2017).
- Part I: Principles of Fermentation Technology 11 Fermentation Technology: Current Status and Future Prospects 3Ritika Joshi, Vinay Sharma and Arindam Kuila1.1 Introduction 31.2 Types of Fermentation Processes 41.2.1 Solid-State Fermentation 41.2.2 Submerged Fermentation 51.2.2.1 Batch Cultivation 51.2.2.2 Substrates Used for Fermentation 51.3 Enzymes 61.3.1 Bacterial Enzymes 61.3.2 Fungal Enzymes 61.4 Antibiotics 71.5 Fed-Batch Cultivation 81.6 Application of SSF 91.6.1 Enzyme Production 91.6.2 Organic Acids 101.6.3 Secondary Metabolites 101.6.4 Antibiotic 101.6.5 Biofuel 101.6.6 Biocontrol Agents 111.6.7 Vitamin 111.7 Future Perspectives 11References 122 Modeling and Kinetics of Fermentation Technology 15Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay2.1 Introduction 162.2 Modeling 172.2.1 Importance of Modeling 182.2.2 Components of Modeling 202.2.2.1 Control Volume 202.2.2.2 Variables 222.2.2.3 Parameters 222.2.2.4 Mathematical Model 222.2.2.5 Automatization 232.3 Kinetics of Modeling 262.3.1 Thermodynamic 272.3.2 Phenomenological 272.3.3 Kinetic 272.3.3.1 Volumetric Rate and Specific Rate 282.3.3.2 Rate Expression for Microbial Culture 312.4 Conclusion 41References 413 Sterilization Techniques used in Fermentation Processes 45Shivani Sharma, Arindam Kuila and Vinay Sharma3.1 Introduction 453.2 Rate of Microbial Death 463.3 How do Sterilants Work? 473.4 Types of Sterilization 473.4.1 Heat 483.4.2 Pressure 483.4.3 Radiation 483.4.4 Filtration 493.4.5 Steam Sterilization 493.5 Sterilization of the Culture Media 493.5.1 Batch Sterilization 493.5.2 Continuous Sterilization 503.6 Sterilization of the Additives 503.7 Sterilization of the Fermenter Vessel 513.8 Filter Sterilization 513.8.1 Diffusion 513.8.2 Inertial Impaction 513.8.3 Electrostatic Attraction 513.8.4 Interception 523.9 Sterilization of Air 52References 524 Advances in Fermentation Technology: Principle and Their Relevant Applications 53Monika Choudhary, Sunanda Joshi, Sameer Suresh Bhagyawant and Nidhi Srivastava4.1 Introduction 534.2 Basic Principle of Fermentation 544.3 Biochemical Process 564.4 Fermentation Methodology 584.5 Biochemical Mechanism 594.6 Fermentation and its Industrial Applications 604.7 Relevance of Fermentation 614.8 Conclusion 62References 635 Fermentation Technology Prospecting on Bioreactors/Fermenters: Design and Types 65Gauri Singhal, Vartika Verma, Sameer Suresh Bhagyawant and Nidhi Srivastava5.1 Introduction 655.2 Bioreactor and Fermenter 675.3 Types of Fermenter and Bioreactor 685.3.1 Laboratory Scale Fermenters 685.3.2 Pilot Scale Fermenters 695.3.3 Industrial Scale Fermenter 695.4 Design and Operation 695.4.1 Fermenter Vessel 725.4.2 Heating and Cooling Apparatus 725.4.3 Sealing Assembly 735.4.4 Baffles 735.4.5 Impeller 735.4.6 Sparger 745.4.7 Feed Ports 745.4.8 Foam Control 745.4.9 Valves 745.4.10 Safety Valves 755.5 Classification of Bioreactor 755.6 Types of Fermenter/Bioreactor 755.6.1 Stirred Tank Fermentor 755.6.2 Airlift Fermentor 765.6.3 Bubble Column Fermentor 785.6.4 Packed Bed Reactors 785.6.5 Fluidized Bed Bioreactor 805.6.6 Photobioreactor 805.6.7 Membrane Bioreactor 815.7 Conclusion 82References 82Part II: Applications of Fermentation Technology 856 Lactic Acid and Ethanol: Promising Bio-Based Chemicals from Fermentation 87Andrea Komesu, Johnatt Oliveira, Luiza Helena da Silva Martins, Maria Regina Wolf Maciel and Rubens Maciel Filho6.1 Introduction 886.2 Generalities about LA and Ethanol 896.3 Fermentation Methods to LA and Ethanol Production 936.4 Potential Raw Materials for Biotechnology Production 956.4.1 Potential Raw Materials for LA Production 956.4.2 Potential Raw Materials for Bioethanol Production 976.5 Challenges in LA and Ethanol Production 1036.6 Integrated Ethanol and LA Production 1056.7 Concluding Remarks 108References 1087 Application of Fermentation Strategies for Improved Laccase Production 117Priyanka Ghosh, Arpan Das and Uma Ghosh7.1 Introduction 1177.1.1 What is Laccase? 1197.2 Major Factors Influencing Fermentation Processes for Laccase Production 1207.2.1 Influence of Carbon Source 1207.2.2 Influence of Nitrogen Source 1227.2.3 Influence of Temperature 1237.2.4 Influence of pH 1247.2.5 Influence of Inducer 1247.3 Type of Cultivation 1267.3.1 Submerged Fermentation 1267.3.2 Solid-State Fermentation 1267.4 Biotechnological Application of Laccases 1297.4.1 Food Industry 1297.4.2 Textile Industries 1317.4.3 Paper Industry 1317.4.4 Bioremediation 1317.4.5 Pharmaceutical Industry 1327.5 Conclusion 132References 1338 Use of Fermentation Technology for Value Added Industrial Research 141Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay8.1 Introduction 1428.2 Fermentation 1438.3 Biofuel Production 1448.3.1 Biohydrogen 1448.3.2 Biodiesel 1458.3.3 Bioethanol 1468.4 1,3-Propanediol 1468.5 Lactic Acid 1478.6 Polyhydroxyalkanoates 1498.7 Exopolysaccharides 1508.8 Succinic Acid 1518.9 Flavoring and Fragrance Substances 1528.10 Hormones and Enzymes 1538.11 Conclusion 156References 1579 Valorization of Lignin: Emerging Technologies and Limitations in Biorefineries 163Gourav Dhiman, Nadeem Akhtar and Gunjan Mukherjee9.1 Introduction 1649.2 Lignocellulosic Material: Focus on Second Generation Biofuel 1659.3 Composition and Biosynthesis of Lignin 1669.3.1 Structure Analysis of Lignin 1679.3.2 Degradative Analytical Techniques (Oxidation, Reduction, Hydrolysis, and Acidolysis) 1679.3.3 Non-Degradative Analytical Techniques (Thioglycolic Acid–TGA and Acetyl Bromide–ACBR) 1689.4 Bioengineering of Lignin 1689.4.1 Reducing the Recalcitrance Nature of Biomass 1689.4.2 Improving Lignin Content for Production of High Energy Feedstock 1699.5 Lignin Separation and Recovery 1709.5.1 Chemical- and Physical-Based Lignin Separations 1719.5.2 Biological Degradation of Lignin 1729.6 Lignin-Based Materials and Polymers 1729.7 Lignin-Based Fuels and Chemicals 1739.8 Concluding Remarks and Future Prospects 174References 17510 Exploring the Fermentation Technology for Biocatalysts Production 181Ronivaldo Rodrigues da Silva10.1 Introduction 18110.2 Biotechnology Fermentation 18210.2.1 Submerged Fermentation 18210.2.2 Solid State Fermentation 18310.3 Production of Enzymes 183References 18511 Microbial CYP450: An Insight into its Molecular/Catalytic Mechanism, Production and Industrial Application 189Abhilek Kumar Nautiyal, Arijit Jana, Sourya Bhattacharya, Tripti Sharma, Neha Bansal, Sree Sai Ogetiammini, Debashish Ghosh, Saugata Hazra and Diptarka Dasgupta11.1 Introduction 19011.2 Microbial Cytochrome P450 19111.3 Extent of P450s in Microbial Genome 19311.4 Structure, Function and Catalytic Cycle 19411.5 Strain Engineering for Improved Activity 19711.6 Producion Strategies of CYP450 20311.6.1 Bioreactor Consideration 20311.6.2 Protein Recovery 20411.7 Applications 20511.7.1 Environmental Application 20611.7.2 Medical Application 20611.8 Conclusion 208References 20812 Production of Polyunsaturated Fatty Acids by Solid State Fermentation 217Bruno Carlesso Aita, Stéfani Segato Spannemberg, Raquel Cristine Kuhn and Marcio Antonio Mazutti12.1 Introduction 21712.2 PUFAs Production by SSF 21912.3 Microorganisms Used for PUFAs Production by SSF 22112.4 Main Process Parameters 22212.4.1 Moisture Content of the Substrate 22312.4.2 Temperature 22812.4.3 Substrate 22812.4.4 Carbon to Nitrogen (C/N) Ratio 22912.4.5 pH 23012.4.6 Incubation Time 23012.5 Bioreactors 23112.6 Extraction of Microbial Oil 23212.7 Concluding Remarks 232References 23313 Solid State Fermentation – A Stimulating Process for Valorization of Lignocellulosic Feedstocks to Biofuel 239Arpan Das and Priyanka Ghosh13.1 Introduction 24013.2 Potential of Lignocellulosic Biomass for Biofuel Production 24213.3 Structure of Lignocellulose 24313.3.1 Cellulose 24313.3.2 Hemicellulose 24513.3.3 Lignin 24513.4 Biomass Recalcitrance 24513.5 Pre-Treatment of Lignocellulosic Biomass 24613.5.1 Chemical Pre-Treatment 24713.5.2 Physical Pre-Treatment 24813.5.3 Biological Pre-Treatment 24813.5.4 Inhibitors Released During Pre-Treatment 24813.6 Hydrolysis 24913.7 Limitations of Enzymatic Hydrolysis 25013.8 Fermentation 25213.8.1 Separate Hydrolysis and Fermentation (SHF) 25213.8.2 Simultaneous Saccharification and Fermentation (SSF) 25213.8.3 Consolidated Bioprocessing 25513.9 Concluding Remarks 257References 25714 Oleaginous Yeasts: Lignocellulosic Biomass Derived Single Cell Oil as Biofuel Feedstock 263Neha Bansal, Mahesh B Khot, Arijit Jana, Abhilek K Nautiyal, Tripti Sharma, Diptarka Dasgupta, Swati Mohapatra, Sanoj Kumar Yadav, Saugata Hazra and Debashish Ghosh14.1 Introduction 26414.2 Oleaginous Yeasts: A Brief Account 26514.3 Lignocellulosic Biomass and its Deconstruction 26714.4 Biochemistry of Lipid Biosynthesis 27614.5 Genetic Modification for Enhancing Lipid Yield 27814.5.1 Over-Expression of Key Metabolic Genes 27814.5.2 Blocking Competing Pathways 28114.5.3 Challenges in Genetic Engineering of Yeast 28214.6 Fermentative Cultivation, Recovery of Yeast Lipids as SCO and Production of Biofuel 28214.7 Characterization of Yeast SCO: Implications towards Biodiesel Properties 28814.8 Concluding Remarks 289References 29415 Pre-Treatment of Lignocellulose for the Production of Biofuels 307Biva Ghosh, Debalina Bhattacharya and Mainak Mukhopadhyay15.1 Introduction 30715.2 Lignocellulose 30915.3 Parameters Effecting the Hydrolysis of Lignocellulose 31015.3.1 Crystallinity of Cellulose 31015.3.2 Cellulose Degree of Polymerization 31115.3.3 Effect of Accessible Surface Area 31115.3.4 Encapsulation by Lignin 31115.3.5 Hemicellulose Content 31215.3.6 Porosity 31215.4 Pre-Treatment of Lignocellulose 31215.4.1 Physical Pre-Treatment 31315.4.1.1 Milling 31315.4.1.2 Microwave 31415.4.1.3 Ultrasound 31515.4.1.4 Irradiation 31515.4.1.5 Mechanical Extrusion 31515.4.1.6 Pyrolysis 31615.4.1.7 Pulse Electric Field (PEF) 31715.4.2 Chemical Pre-Treatment 31715.4.2.1 Alkaline Pre-Treatment 31715.4.2.2 Dilute-Acid Pre-Treatment 31815.4.2.3 Ionic Liquids 32015.4.2.4 Deep Eutectic Solvents 32015.4.2.5 Natural Deep Eutectic Solvents 32115.4.2.6 Ozonolysis 32115.4.2.7 Organosolv 32215.4.3 Physicochemical Pre-Treatment 32315.4.3.1 Ammonia Fiber Expansion (AFEX) 32315.4.3.2 Ammonia Recycled Percolation (ARP) and Soaking in Aqueous Ammonia 32315.4.3.3 Hot Water Pre-Treatment 32415.4.3.4 Steam Explosion 32515.4.3.5 SO2-Catalyzed Steam Explosion 32615.4.3.6 Oxidation 32615.4.3.7 Wet Oxidation 32715.4.3.8 SPORL Treatment 32715.4.3.9 Supercritical Fluid 32715.4.4 Biological Pre-Treatment 32815.4.4.1 White-Rot Fungi 32815.4.4.2 Brown-Rot Fungi 32915.4.4.3 Soft-Rot Fungi 32915.4.4.4 Bacteria and Actinomycetes 32915.4.5 Other Pre-Treatment Process 32915.4.5.1 Hydrotrope Pre-Treatment 32915.4.5.2 Photocatalytic Pre-Treatment 33015.5 Case Studies of Biofuels 33115.5.1 Ethanol Production 33115.5.2 Butanol 33315.5.3 Biohydrogen 33415.5.4 Biogas 33615.6 Conclusion 338Reference 33916 Microalgal Biomass as an Alternative Source of Sugars for the Production of Bioethanol 351Maria Eugenia Sanz Smachetti, Lara Sanchez Rizza, Camila Denise Coronel, Mauro Do Nascimento and Leonardo Curatti16.1 Overview 35216.2 Aquatic Species as Alternative Feedstocks for Low-Cost-Sugars 35316.2.1 Seaweed 35316.2.1.1 Seaweed Biomass 35316.2.1.2 Seaweed Cultivation 35416.2.1.3 Seaweed as a Biofuels Feedstock 35516.2.2 Microalgae 35716.2.2.1 Microalgae Biomass as a Biofuel Feedstock 35816.2.2.2 Microalgal Biomass Production Technology 36216.2.2.3 Microalgae Productivity 36416.2.2.4 Harvesting and Drying Algal Biomass 36516.2.2.5 Microalgal Biomass Conversion into Biofuels 36716.3 Environmental Sustainability of Microlgal-Based Biofuels 37516.4 Prospects for Commercialization of Microalgal-Based Bioethanol 37616.5 Conclusions and Perspectives 377References 37817 A Sustainable Process for Nutrient Enriched Fruit Juice Processing: An Enzymatic Venture 387Debajyoti Kundu, Jagriti Singh, Mohan Das, Akanksha Rastogi and Rintu Banerjee17.1 Introduction 38817.2 Conventional Methods for Juice Processing and Their Drawbacks 38917.3 Enzyme Technology in Different Step of Juice Processing 39017.3.1 Peeling and Extraction 39117.3.2 Clarification 39317.3.3 Debittering 39517.4 Conclusion 396References 39618 Biotechnological Exploitation of Poly-Lactide Produced from Cost Effective Lactic Acid 401Mohan Das, Debajyoti Kundu, Akanksha Rastogi, Jagriti Singh and Rintu Banerjee18.1 Introduction 40218.2 Need for Ideal Substrates for Lactic Acid Production 40318.3 Role of Microbes and Biochemical Pathways in Lactic Acid Production 40518.4 Purification of Lactic Acid 40618.5 Methods of Synthesis of PLA 40818.5.1 Direct Poly Condensation 40818.5.2 Ring Opening Poly Condensation 40918.6 Applications of PLA 41118.7 Conclusion 413References 41319 A New Perspective on Fermented Protein Rich Food and its Health Benefits 417Jagriti Singh, Akanksha Rastogi, Debajyoti Kundu, Mohan Das and Rintu Banerjee19.1 Introduction 41819.2 Sources of Fermented Protein 42019.3 Protein in Biological System 42019.4 Bioabsorbability of Protein 42319.4.1 Absorption of Peptides and Amino Acids 42319.5 Fermented Protein-Rich Food Products 42419.5.1 Soyabean (Gycine max) 42419.5.2 DDGS (Distillers Dried Grain with Solubles) 42619.5.3 Tempe 42619.5.4 Red Bean (Phaseolus Vulgaris) 42719.5.5 Fermented Peanuts (Arachis Hypogae) 42819.5.6 Sufu 42819.5.7 Kefir 42919.5.8 Fermented Whey Beverage 43019.5.9 Salami 43119.6 Conclusion 431References 43220 An Understanding of Bacterial Cellulose and its Potential Impact on Industrial Applications 437Akanksha Rastogi, Jagriti Singh, Mohan Das, Debajyoti Kundu and Rintu Banerjee20.1 Introduction 43820.2 Cultivation Conditions for Production of Bacterial Cellulose 43920.2.1 Fermentation Process 43920.2.2 Composition of Culture Media 44020.2.2.1 Carbon Source 44020.2.2.2 pH for Bacterial Cellulose Production 44020.2.2.3 Temperature for BC Production 44120.2.2.4 Dissolved Oxygen on BC Production 44120.3 Bioreactor System for Bacterial Cellulose 44120.3.1 Stirred Tank Reactor 44220.3.2 Trickling Bed Reactor 44220.3.3 Airlift Bioreactors 44220.3.4 Aerosol Bioreactor 44320.3.5 Rotary Bioreactor 44320.3.6 Horizontal Lift Reactor 44420.3.7 Other Type of Bioreactor 44420.4 Plant Cellulose vs. Bacterial Cellulose 44420.4.1 Morphology 44620.4.2 Crystallinity 44720.4.3 Degree of Polymerization 44720.4.4 Thermal Properties 44720.4.5 Mechanical Properties 44720.4.6 Water Absorption Properties 44820.4.7 Optical Properties 44820.5 Compositional View of Bacterial Cellulose 44820.6 Molecular Biology of Bacterial Cellulose 44920.7 Importance of Genetically Modified Bacteria in Bacterial Cellulose Production 45020.8 Applications of Bacterial Cellulose in Different Industrial Sector 45120.8.1 Skin and Wound Healing 45120.8.2 Bacterial Cellulose Composites 45220.8.3 Artificial Blood Vessels 45220.8.4 In Paper Industry 45220.8.5 In Food Industry 45320.8.6 Applications of Bacterial Cellulose in Other Fields 45320.9 Conclusion 454References 454Index 459
Du kanske också är intresserad av
Genetic and Metabolic Engineering for Improved Biofuel Production from Lignocellulosic Biomass
Arindam Kuila, Vinay Sharma, India) Kuila, Arindam (Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan, India) Sharma, Vinay (Professor and Head, Department of Bioscience and Biotechnology, Banasthali Vidyapith
2 459 kr