Practicing Trustworthy Machine Learning
Consistent, Transparent, and Fair AI Pipelines
Häftad, Engelska, 2023
Av Yada Pruksachatkun, Matthew McAteer, Subhabrata Majumdar, Matthew Mcateer, Subho Majumdar
759 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.With the increasing use of AI in high-stakes domains such as medicine, law, and defense, organizations spend a lot of time and money to make ML models trustworthy. Many books on the subject offer deep dives into theories and concepts. This guide provides a practical starting point to help development teams produce models that are secure, more robust, less biased, and more explainable.Authors Yada Pruksachatkun, Matthew McAteer, and Subhabrata Majumdar translate best practices in the academic literature for curating datasets and building models into a blueprint for building industry-grade trusted ML systems. With this book, engineers and data scientists will gain a much-needed foundation for releasing trustworthy ML applications into a noisy, messy, and often hostile world.You'll learn:Methods to explain ML models and their outputs to stakeholdersHow to recognize and fix fairness concerns and privacy leaks in an ML pipelineHow to develop ML systems that are robust and secure against malicious attacksImportant systemic considerations, like how to manage trust debt and which ML obstacles require human intervention
Produktinformation
- Utgivningsdatum2023-01-13
- Mått178 x 232 x 15 mm
- Vikt546 g
- SpråkEngelska
- Antal sidor350
- FörlagO'Reilly Media
- EAN9781098120276