Practical Synthetic Data Generation

Balancing Privacy and the Broad Availability of Data

Häftad, Engelska, 2020

Av Khaled El Emam, Lucy Mosquera, Richard Hoptroff, Khaled El Emam

639 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data-fake data generated from real data-so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenueData scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes:Steps for generating synthetic data using multivariate normal distributionsMethods for distribution fitting covering different goodness-of-fit metrics How to replicate the simple structure of original data An approach for modeling data structure to consider complex relationshipsMultiple approaches and metrics you can use to assess data utilityHow analysis performed on real data can be replicated with synthetic dataPrivacy implications of synthetic data and methods to assess identity disclosure

Produktinformation

  • Utgivningsdatum2020-06-02
  • Mått178 x 232 x 13 mm
  • Vikt302 g
  • FormatHäftad
  • SpråkEngelska
  • Antal sidor175
  • FörlagO'Reilly Media
  • ISBN9781492072744

Tillhör följande kategorier