Polymer Science, Engineering, and Sustainability, 2 Volume Set
- Nyhet
Inbunden, Engelska, 2025
Av Enrique Saldivar-Guerra, Eduardo Vivaldo-Lima, Mexico) Saldivar-Guerra, Enrique (Center for Research in Applied Chemistry (CIQA), Canada) Vivaldo-Lima, Eduardo (Universidad Nacional Autonoma de M?xico (UNAM), Mexico; University of Waterloo
3 139 kr
Produktinformation
- Utgivningsdatum2025-12-10
- FormatInbunden
- SpråkEngelska
- Antal sidor1 408
- Upplaga2
- FörlagJohn Wiley & Sons Inc
- ISBN9781119820093
Tillhör följande kategorier
Enrique Saldivar-Guerra, PhD, is Senior Researcher at the Center for Research in Applied Chemistry in Mexico. Eduardo Vivaldo-Lima, PhD, is Full Professor at the Universidad Nacional Autonoma de Mexico, external academic member of the Institute for Polymer Research at the University of Waterloo, and Associate Editor of The Canadian Journal of Chemical Engineering.
- About the Editors xxiiiList of Contributors xxvPreface xxixAcknowledgments xxxiVolume 11 Introduction to Polymers and Polymer Types 1Enrique Saldívar-Guerra and Eduardo Vivaldo-Lima1.1 Introduction to Polymers 11.1.1 Basic Concepts 11.1.2 History 21.1.3 Mechanical and Rheological Properties 21.1.3.1 Mechanical Properties 21.1.3.2 Rheological Properties 31.1.4 Polymer States 41.1.5 Molecular Weight 41.1.5.1 Moments of the Molar Mass Distribution 61.1.6 Main Types and Uses 81.2 Classification of Polymers 91.2.1 Classification Based on Structure 91.2.2 Classification Based on Mechanism 101.2.2.1 Step-Growth Polymerization (SGP) 101.2.2.2 Chain or Chain-growth Polymerization (CP) 101.2.3 Classification by Chain Topology 111.2.4 Other Classification Criteria 141.2.4.1 Homo and Copolymers 141.2.4.2 Origin 141.2.4.3 Biodegradability and Sustainability 141.2.4.4 Production Volume 151.3 Nomenclature 151.3.1 Conventional Nomenclature 151.3.2 IUPAC Structure-based Nomenclature 161.3.3 Trade, Common Names, and Abbreviations 161.4 Further Reading 16Acknowledgments 17References 172 Polycondensation 19Luis Ernesto Elizalde, Gladys de losSantos, Rita del Rosario Sulub-Sulub, and Manuel Aguilar-Vega2.1 Introduction 192.1.1 General Principles 192.1.2 Number-Average Degree of Polymerization 212.1.3 Molecular Weight Distribution 232.1.4 Polymers Obtained by Polycondensation Polymerization 242.2 Polycondensation Kinetics 272.3 Polyamides 282.3.1 Polyamidation 282.3.2 Aromatic Polyamides 302.4 Polyimides 302.5 Polyesters 322.5.1 Polyesters from Diols 322.5.2 Polyethers 342.5.3 Polyurethanes 352.5.4 Polyureas 352.5.5 Polycarbonates 362.5.6 Polysulfones 372.5.7 Polybenzimidazole 372.5.8 Depolymerization and Recycling 392.6 Inorganic Condensation Polymers 412.6.1 Polysiloxanes 412.6.2 Polysilanes 422.6.3 Polyphosphazenes 432.7 Dendrimers 442.8 Thermoset Polycondensation Polymers 452.8.1 Polyester Resins 452.8.2 Epoxy Resins 452.8.3 Alkyd Resins 472.8.4 Phenolic Resins 472.8.5 Urea-Formaldehyde Resins 472.9 Bio-based Step-Growth Polymers 482.10 Bio-based Polycondensation Polymers 502.10.1 Dicarboxylic Acids and Diols 522.10.2 Hydroxy Acids and Hydroxyl Esters 522.10.3 Amino Acids and Lactams 522.10.4 Diamines 522.11 Controlled Molecular Weight Condensation Polymers 532.11.1 Solid Phase Synthesis 542.11.2 Use of Macromonomers in Condensation Reactions 54References 573 Free-Radical Polymerization 65Ramiro Guerrero-Santos, Enrique Saldívar-Guerra, Iván Zapata-González, José Bonilla-Cruz, and Eduardo Vivaldo-Lima3.1 Introduction 653.2 Basic Mechanism 663.2.1 Chemical Initiation 673.2.2 Propagation 683.2.3 Termination 693.3 Other Free Radical Reactions 703.3.1 Chain Transfer to Small Species 703.3.2 Chain Transfer to Monomer 713.3.3 Chain Transfer to Initiator 713.3.4 Chain Transfer to Solvent and Chain Transfer Agents 713.3.5 Chain Transfer to Impurities 723.3.6 Chain Transfer to Polymer 723.3.7 Backbiting 743.3.8 Reactions to Internal and Terminal Double Bonds and Crosslinking 753.3.9 Inhibition 763.4 Kinetics and Polymerization Rate 773.4.1 Diffusion-Controlled (DC) Effects 793.5 Molecular Weight and Molecular Weight Distribution 833.5.1 Full Molecular Weight Distribution 843.6 Experimental Determination of Rate Constants 863.7 Thermodynamics of Polymerization 86Acknowledgment 89References 894 Reversible-Deactivation Radical Polymerization (RDRP) 97Graeme Moad, Eduardo Vivaldo-Lima, Michael F. Cunningham, Robin A. Hutchinson, Connor Sanders, Enrique Saldívar-Guerra, and Alexander Penlidis4.1 Introduction to RDRP 974.1.1 Terminology for RDRP 974.1.1.1 RDRP with Unimolecular Activation – Stable radical-mediated Polymerization 974.1.1.2 RDRP with Bimolecular Activation – Atom-Transfer Radical Polymerization 984.1.1.3 RDRP with Activation by Degenerative Chain Transfer – Degenerative Chain-Transfer Radical Polymerization 1004.1.1.4 Multiple Mechanism RDRP 1004.2 Nitroxide-Mediated Polymerization (NMP) 1024.2.1 Historical Background 1024.2.2 Polymer Chemistry of NMP 1024.2.2.1 Mechanistic Aspects and Chemical Routes 1024.2.2.2 Nitroxides Most Commonly Used 1034.2.2.3 Structure Control and Macromolecular Architectures 1064.2.3 A Polymer Reaction Engineering (PRE) View of NMP 1074.2.3.1 Kinetics and Mathematical Modeling 1074.2.3.2 Dispersed-Phase Polymerizations 1094.2.3.3 NMP in scCO2 1094.2.3.4 Continuous NMP 1094.2.4 Applications and Perspectives 1094.2.5 Closing Remarks 1104.3 Atom-Transfer Radical Polymerization (ATRP) 1114.3.1 Normal ATRP 1114.3.2 ATRP Variants 1134.3.3 Future Outlook 1154.4 Reversible-Addition-Fragmentation Chain-Transfer Polymerization (RAFT) 1154.4.1 RAFT Mechanism 1164.4.2 Monomers in RAFT Polymerization 1174.4.3 Initiation and Termination in RAFT Polymerization 1174.4.4 RAFT Agents 1184.4.4.1 Z Group Selection 1204.4.4.2 R Group Selection 1214.4.4.3 Other Considerations in RAFT Agent Selection 1224.4.5 Sequence-defined Oligomers 1224.4.6 (Multi)Block Copolymer Synthesis 1224.4.7 Star Synthesis 1244.5 Other RDRP Systems 1254.5.1 Degenerative Transfer Controlled Radical Polymerization Mediated by Organotellurium (TERP) 1254.5.2 Degenerative Transfer RDRP Mediated by Organostibine (SBRP) and Organobismuthine (BIRP) 1264.5.3 Iodine Transfer Polymerization (ITP) and Variants 1274.5.4 Reversible Chain-Transfer Catalyzed Polymerization (RTCP) 1274.5.5 Organometallic Mediated Radical Polymerization 1284.6 RDRP in Aqueous Dispersions 1294.6.1 Introduction 1294.6.2 Nitroxide-mediated Polymerization (NMP) 1304.6.2.1 Emulsion Polymerization 1304.6.2.2 Miniemulsion Polymerization 1304.6.2.3 Microemulsion Polymerization 1304.6.3 Atom-Transfer Radical Polymerization (ATRP) 1304.6.3.1 Emulsion Polymerization 1304.6.3.2 Miniemulsion Polymerization 1314.6.3.3 Microemulsion Polymerization 1324.6.4 Reversible-Addition-Fragmentation Chain-Transfer (RAFT) Polymerization 1324.6.4.1 Emulsion Polymerization 1324.6.4.2 Miniemulsion Polymerization 1334.6.4.3 Microemulsion Polymerization 1334.6.5 Tellurium-Mediated Radical Polymerization (TERP) 1334.6.6 Iodine Transfer Polymerization 1344.6.7 Concluding Remarks 134Acknowledgments 134References 1355 Coordination Polymerization 161João Soares, Odilia Pérez, and Arash Alizadeh5.1 Introduction 1615.2 Polyolefin Types 1625.3 Catalysts Types 1625.3.1 Phillips Catalyst 1625.3.2 Classical Ziegler–Natta Catalysts 1635.3.2.1 Conjugated and Nonconjugated Dienes Polymerizations 1645.3.3 Single-Site Catalysts 1645.3.3.1 Metallocenes and Constrained Geometry Catalysts 1645.3.3.2 Nonmetallocene Early Transition Metal-Based SSCs 1675.3.3.3 Late Transition Metal Catalysts 1685.3.3.4 Supported Single-Site Catalysts 1685.4 Coordination Polymerization Mechanism 1695.5 Polymerization Kinetics and Mathematical Modeling 1705.5.1 Polymer Microstructural Models 1705.6 Modeling Particle-Scale Phenomena 1765.7 Polymerization Reactor Models 181References 1836 Copolymerization 191Marc A. Dubé, Enrique Saldívar-Guerra, Iván Zapata-González, and Eduardo Vivaldo-Lima6.1 Introduction 1916.1.1 What Are Copolymers? 1916.1.2 Commercial Copolymer Examples 1926.1.2.1 Step-Growth Copolymerization 1926.2 Types of Copolymers 1926.2.1 Statistical Copolymers 1926.2.2 Alternating Copolymers 1936.2.3 Block Copolymers 1936.2.4 Gradient Copolymers 1946.2.5 Graft Copolymers 1946.2.6 Notes on Nomenclature 1946.3 Copolymer Composition and Microstructure 1946.3.1 Terminal Model Kinetics 1946.3.1.1 Copolymer Composition Behavior 1976.3.2 Other Copolymerization Models 1996.3.2.1 Penultimate Model 2006.3.2.2 Depropagation Models 2016.3.2.3 Models Involving the Participation of Complexes 2026.3.2.4 Model Discrimination 2026.3.3 Reactivity Ratio Estimation 2036.3.4 Sequence Length Distribution 2046.3.5 Composition Measurement Methods 2056.3.6 Extensions to Multicomponent Copolymerization 2066.4 Reaction Condition Considerations 2086.4.1 Copolymerization Rate 2086.4.2 Effect of Temperature 2106.4.3 Reaction Medium 2116.4.4 Monomer Concentration Effects 2126.4.5 Effect of Pressure 2136.4.6 Achieving Uniform Copolymer Composition 2136.4.6.1 Policy I 2136.4.6.2 Policy II 2146.5 Reversible-Deactivation Radical Copolymerization (RDRcoP) 2156.5.1 Reactivity Ratios for Linear Structures 2156.5.2 Conventional Copolymerizations and RDRcoP Leading to Nonlinear Structures (Effect of Branching and Cross linking) 2166.6 Copolymerization Systems Including Bio-Based Monomers 218Acknowledgment 218References 2197 Anionic Polymerization 233Roderic Quirk and Hongwei Ma7.1 Introduction 2337.2 Living Anionic Polymerization 2347.2.1 Molecular Weight Control 2347.2.2 Molecular Weight Distribution 2357.3 General Considerations 2367.3.1 Monomers 2367.3.2 Solvents 2387.3.3 Initiators 2387.3.4 Initiation by Electron Transfer Alkali Metals 2387.3.4.1 Radical Anions 2397.3.5 Initiation by Nucleophilic Addition 2407.3.5.1 Alkyllithium Compounds 2407.3.5.2 Organoalkali Initiators 2427.3.5.3 Organoalkaline Earth Initiators 2427.3.5.4 Ate Complexes 2437.3.5.5 Difunctional Initiators 2437.3.5.6 Functionalized Initiators 2447.3.5.7 1,1-Diphenylmethyl Carbanions 2447.4 Kinetics and Mechanism of Polymerization 2457.4.1 Styrene and Diene Monomers 2457.4.1.1 Initiation in Hydrocarbon Solvents? 2457.4.1.2 Propagation 2467.4.1.3 Polar Solvents 2477.4.1.4 Termination Reactions 2487.4.1.5 Chain Transfer Reactions 2517.4.2 Polar Monomers 2517.4.2.1 Polar Vinyl Monomers 2517.4.2.2 Methyl Methacrylate 2527.4.2.3 Heterocyclic Monomers 2537.4.2.4 Ethylene Oxide 2537.4.2.5 Propylene Oxide 2547.4.2.6 Propylene Sulfide 2547.4.2.7 Lactones 2557.4.2.8 Cyclic Carbonates 2567.4.2.9 Siloxanes 2577.5 Stereochemistry 2587.5.1 Polydienes 2587.5.1.1 Hydrocarbon Solvents 2587.5.1.2 Polar Solvents and Polar Additives 2607.5.2 Methacrylate Stereochemistry 2627.5.3 Styrene 2637.5.4 Vinylpyridines 2637.6 Copolymerization of Styrenes and Dienes 2637.6.1 Tapered Block Copolymers 2657.6.2 Random Styrene-Diene Copolymers (Styrene-Butadiene Rubber) 2667.7 Synthetic Applications of Living Anionic Polymerization 2677.7.1 Block Copolymers 2677.7.1.1 Block Copolymer Synthesis by Three-Step Sequential Monomer Addition 2687.7.1.2 Block Copolymer Synthesis by Two-Step Sequential Monomer Addition and Coupling 2697.7.1.3 Block Copolymers by Difunctional Initiation and Two-Step Sequential Monomer Addition 2707.7.2 Star-Branched Polymers 2717.7.2.1 Linking Reactions with Silyl Halides 2717.7.2.2 Divinylbenzene Linking Reactions 2727.7.2.3 New Linking Chemistry 2737.7.3 Synthesis of Chain-End Functionalized Polymers 2747.7.3.1 Chain-End Functionalization by Termination with Electrophilic Reagents 2747.7.3.2 Functionalizations Via Silyl Hydride Functionalization and Hydrosilation 2757.7.4 Industrial Applications of Alkyllithium-Initiated Anionic Polymerization 276References 2778 Cationic Polymerizations 291Filip E. Du Prez, Eric J. Goethals, Ricardo Acosta Ortiz, and Richard Hoogenboom8.1 Introduction 2918.2 Carbocationic Polymerization 2928.2.1 Isobutene 2938.2.2 Vinyl Ethers 2978.2.3 Styrene Monomers 3018.3 Cationic Ring-Opening Polymerization 3028.3.1 Cyclic Ethers 3038.3.1.1 Poly(ethylene oxide) 3038.3.1.2 Poly(oxetane) 3038.3.1.3 Poly(tetrahydrofuran) 3048.3.2 Cyclic Amines 3088.3.2.1 Aziridines 3088.3.2.2 Azetidines 3108.3.3 Cyclic Imino Ethers 3108.3.4 Photoinitiated Cationic Polymerization 3148.3.4.1 Diaryliodonium Salts 3158.3.4.2 Triarylsulfonium Salts 3178.3.4.3 Photosensitizers 3198.4 Summary and Prospects 319Acknowledgment 320References 3209 Crosslinking 333Julio César Hernández-Ortiz, Porfirio López-Domínguez, Patricia Pérez-Salinas, and Eduardo Vivaldo-Lima9.1 Introduction 3339.2 Background on Polymer Networks 3349.2.1 Types of Polymer Networks Based on Structure 3349.2.1.1 Definition and Structure of Polymer Networks 3349.2.1.2 Ideal or Perfect Networks 3359.2.1.3 Imperfect Polymer Network 3359.2.1.4 Model Polymer Network 3359.2.1.5 Interpenetrating and Semi-interpenetrating Polymer Networks 3369.2.2 Chemical and Physical Networks 3369.2.2.1 Physical Networks 3369.2.2.2 Chemical or Covalent Networks 3369.2.3 Intermolecular and Intramolecular Crosslinking 3379.2.4 Monomer Functionality ( f ) 3389.2.5 Crosslink Density 3389.2.6 Gelation and Swelling Index 3389.2.6.1 Swelling Index 3399.3 Main Chemical Routes for Synthesis of Polymer Networks 3399.3.1 Step-Growth Polymerization 3399.3.2 Vulcanization 3409.3.3 End-linking 3409.3.4 Free-Radical Copolymerization (FRC) 3409.3.4.1 FRC Using Divinyl Monomers 3409.3.4.2 Crosslinking During Post-polymerization Processing 3419.4 Characterization of Polymer Networks and Gels 3429.4.1 Determination of the Gelation Point 3439.4.2 Measurement of Crosslink Density 3449.5 Theory and Mathematical Modeling of Crosslinking 3459.5.1 Statistical Gelation Theories 3469.5.2 Percolation Gelation Theories 3489.5.3 Kinetic Theories 3509.5.4 Full CLD in FRC 3519.5.4.1 Full CLDs for FRC Using kMC 3539.5.5 Crosslinking and Reversible-Deactivation Radical Polymerization 354Acknowledgments 356References 35610 Polymer Modification and Grafting 369Mariamne Dehonor-Gómez, Enrique Saldívar-Guerra, Alfonso González-Montiel, José Bonilla-Cruz, and Eduardo Vivaldo-Lima10.1 General Concepts 36910.1.1 Methods for the Synthesis of Functional Polymers 36910.1.2 Grafting onto, Grafting Through, and Grafting from 37010.1.3 Grafting on Polymeric and Inorganic Surfaces 37010.1.4 Polymer Coupling Reactions 37210.2 Graft Copolymers 37310.2.1 Commercial Polymer Grafting 37310.2.1.1 High-Impact Polystyrene 37310.2.1.2 Technical Aspects 37310.2.1.3 Acrylonitrile-Butadiene-Styrene Polymers (ABS) 37510.2.1.4 Other Impact-Modified Commercial Grafting-Based Polymers 37510.2.1.5 Graft-Polyols 37610.2.2 Polyolefins 37610.2.2.1 Borane Compounds 37610.2.2.2 Ziegler–Natta and Metallocenes 37610.2.2.3 Cationic and Anionic Graft Copolymerization 37610.2.3 Modern Grafting Techniques onto Polymers 37710.2.3.1 NMP, RAFT, and ATRP 37710.2.3.2 Grafting of Synthetic Polymers onto Biopolymers 38110.2.4 Functionalization and Grafting from Surfaces 38210.2.4.1 Grafting from Nanoparticles 38210.2.4.2 Carbon Derivatives 38510.2.5 Modeling of Polymer Grafting 38910.2.6 Concluding Remarks 391Acknowledgments 391References 39211 Polymer Additives 409Rudolf Pfaendner11.1 Introduction 40911.2 Antioxidants 41111.2.1 Primary Antioxidants 41211.2.2 Secondary Antioxidants 41411.2.3 Other Antioxidative Stabilizers 41411.2.4 Testing of Antioxidants 41511.2.5 Selected Examples 41511.2.6 Trends in Antioxidants 41711.3 PVC Heat Stabilizers 41711.3.1 Mixed Metal Salts 41711.3.2 Organo Tin Heat Stabilizers 41711.3.3 Metal-Free Heat Stabilizers 41811.3.4 Costabilizers 41811.3.5 Testing of PVC Heat Stabilizers 41811.3.6 Selected Examples of PVC Heat Stabilization 41911.3.7 Trends in PVC Stabilization 42011.4 Light Stabilizers 42011.4.1 UV Absorbers 42111.4.2 Hindered Amine Light Stabilizers 42111.4.3 Testing of Light Stabilizers 42211.4.4 Selected Examples of Light Stabilization 42311.4.5 Trends in UV/Light Stabilizers 42311.5 Flame Retardants 42411.5.1 Halogenated Flame Retardants 42511.5.2 Inorganic Flame Retardants 42511.5.3 Phosphorus and Nitrogen-Containing Flame Retardants 42511.5.4 Testing of Flame Retardancy 42611.5.5 Selected Examples of Flame Retardancy 42711.5.6 Trends in Flame Retardants 42711.6 Plasticizers 42811.6.1 Chemical Structures 42811.6.2 Testing of Plasticizers 42911.6.3 Trends in Plasticizers 42911.7 Impact Modifiers 42911.7.1 Chemical Structures of Impact Modifiers 43011.7.2 Testing 43011.7.3 Trends 43011.8 Scavenging Agents 43011.8.1 Acid Scavengers 43011.8.2 Aldehyde Scavengers 43111.8.3 Odor Reduction 43111.9 Additives to Enhance Processing 43111.10 Additives to Modify Plastic Surface Properties 43211.10.1 Slip and Antiblocking Agents 43211.10.2 Antifogging Agents 43211.10.3 Antistatic Agents 43211.11 Additives to Modify Polymer Chain Structures 43311.11.1 Chain Extenders 43311.11.2 Controlled Degradation 43411.11.3 Prodegradants 43411.11.4 Crosslinking Agents 43411.12 Additives to Influence Morphology and Crystallinity of Polymers 43511.12.1 Nucleating Agents/Clarifiers 43511.12.2 Coupling Agents/Compatibilizers 43611.13 Antimicrobials 43611.14 Additives to Enhance Thermal Conductivity 43611.15 Additives for Recycled Plastics 43711.16 Active Protection Additives (Smart Additives) 43711.16.1 Content Protection 43711.16.2 Productivity Enhancer 43811.16.3 Heat Control 43811.17 Odor Masking 43911.18 Animal Repellents 43911.19 Markers 43911.20 Blowing Agents 43911.21 Summary and Trends in Polymer Additives 44011.22 Selected Literature 440References 44112 Polymer Reaction Engineering 445Alexander Penlidis, Eduardo Vivaldo-Lima, Julio C. Hernández-Ortiz, Enrique Saldívar-Guerra, Porfirio López-Domínguez, and Carlos Guerrero-Sánchez12.1 Introduction 44512.2 Mathematical Modeling of Polymerization Processes 44612.2.1 Chemical Reactor Modeling Background 44612.2.2 The Method of Moments 44812.2.3 Bivariate Distributions 45012.2.4 Pseudo-homopolymer Approach or Pseudo-kinetic Rate Constants Method 45212.3 Useful Tips on Polymer Reaction Engineering and Modeling 45512.3.1 Tip 1: (Initiators, Initiator Data, and Initiator Decomposition) 45512.3.2 Tip 2: (Chain Stereoregularity and Active Sites) 45512.3.3 Tip 3: (Radical Lifetime) 45512.3.4 Tip 4: (Chain Microstructure and Propagation Reactions) 45512.3.5 Tip 5: (Transfer Reactions, Branching, Effects on Molecular Weight Averages, and Effects on Polymerization Rate) 45612.3.6 Tip 6 (Related to Tip 5): (Impurities, Transfer to Monomer, and Terminal Double Bonds) 45612.3.7 Tip 7: (Glass Transition Temperature, Limiting Conversion, Methyl Methacrylate Polymerization, and Depropagation) 45612.3.8 Tip 8: (Terminal Double Bond Polymerization) 45712.3.9 Tip 9: (Radical Stationary State Hypothesis) 45712.3.10 Tip 10: (Troubleshooting with Molecular Weight Data and Detection of Branching) 45812.3.11 Tip 11: (Long Chain Approximation, Density/Volume of Polymerizing Mixture, and Ideal vs. Diffusionally Limited Kinetics) 45812.3.12 Tip 12: (Copolymerization, Reactivity Ratios, and Estimation of Reactivity Ratios) 45812.3.13 Tip 13 (Related to Tip 12): (Copolymerization, Copolymer Composition, Composition Drift, Azeotropy, Semibatch Reactor, and Copolymer Composition Control) 45912.3.14 Tip 14: (Instantaneous vs. Cumulative Properties and Troubleshooting with Molecular Weight Data) 46012.3.15 Tip 15: (Expressions for Rate of Polymerization) 46012.3.16 Tip 16: (Polymerization of Methyl Methacrylate, Styrene, and Vinyl Acetate) 46112.3.17 Tip 17: (Termination in Homopolymerization and Copolymerization, and Initiation Rate in Homopolymerization and Copolymerization) 46112.3.18 Tip 18: (Internal Double Bond Polymerization) 46212.3.19 Tip 19: (Intramolecular Chain Transfer, Backbiting, and Short Chain Branching) 46212.3.20 Tip 20: (Polymerization Heat Effects and Energy Balances) 46212.3.21 Tip 21: (Crosslinking, Gelation, Gel Formation, and Sol vs. Gel) 46312.3.22 Tip 22: (Design and Selection of Polymeric Materials with Specific Properties) 46412.3.23 Tip 23: (Additional Techniques for Polymer Reactor/Process Troubleshooting) 46412.4 Machine Learning in Polymer Research and Development 46412.5 Examples of Several Free-Radical (Co)polymerization Schemes and the Resulting Kinetic and Molecular Weight Development Equations 46612.5.1 Modeling Linear and Nonlinear Homo- and Co-polymerizations Assuming Monofunctional Polymer Molecules and Using the PKRCM 46612.5.2 Modeling Linear and Nonlinear Homo- and Co-polymerizations Assuming Multifunctional Polymer Molecules and Using the PKRCM 469Acknowledgments 475References 47513 Bulk and Solution Processes 481Marco Aurelio Villalobos Montalvo and Jon Debling13.1 Definition 48113.2 History 48113.3 Processes for Bulk and Solution Polymerization 48213.3.1 Reactor Types 48213.3.1.1 Batch/Semi-batch Reactor 48213.3.1.2 Continuous Stirred Tank Reactor (CSTR) 48213.3.1.3 Autoclave Reactor 48313.3.1.4 Tubular Reactor 48313.3.1.5 Loop Reactor 48413.3.1.6 Casts and Molds 48413.3.1.7 Continuous Micro-Reactors 48513.3.2 Processes for Free-Radical Polymerization 48613.3.2.1 Polystyrene 48613.3.2.2 Styrene-Acrylonitrile (SAN) Copolymers 48813.3.2.3 High-Impact Polystyrene (HIPS) 48813.3.2.4 Acrylonitrile/Butadiene/Styrene (ABS) 48913.3.2.5 Acrylics 49013.3.2.6 Water-Soluble Polymers 49213.3.2.7 Branched and Hyperbranched Polymers 49213.3.2.8 In Situ Polymerization 49213.3.3 Processes for Step-Growth Polymerization 49313.3.3.1 Polyesters 49413.3.3.2 Polyamides 49713.3.3.3 Polycarbonates 49813.3.3.4 Epoxy Resins 49913.3.3.5 Polysulfones 50013.3.3.6 Dendrimers and Hyperbranched Polymers 50113.3.3.7 Biopolymers 50113.3.4 Processes for Ionic/Anionic Polymerization 50213.3.4.1 Anionic Polystyrene (PS), Styrene-Butadiene (SB), and Styrene–Isoprene (SI) Copolymers 50213.3.5 Processes for Homogenous Catalyzed Polymerization 50413.3.5.1 Polyethylene 50413.4 Energy Considerations 50513.4.1 Heat of Polymerization 50513.4.2 Adiabatic Temperature Rise 50613.4.3 Self-Accelerating Temperature 50613.4.4 Reactor Energy Balance 50713.4.4.1 Continuous Stirred Tank Reactor 50713.4.4.2 Cascade of CSTR’s 50813.4.4.3 Tubular Reactors 50813.5 Mass Considerations 50813.5.1 Reactor Size 50813.5.2 Process Residence Time, Conversion, Transients, and Steady State 50913.5.3 Reactor Pressure 51013.5.4 Viscosity 51013.5.5 Mixing 51113.5.6 Polymer Purification 51113.6 Sustainability 51213.6.1 Monomers from Recycled Content 51213.6.2 Biobased Monomers and Solvents 51313.6.3 Life Cycle Assessment LCA of Polymerization Processes 514References 51414 Dispersed-phase Polymerization Processes 521Jorge Herrera-Ordóñez, Enrique Saldívar-Guerra, Eduardo Vivaldo-Lima, and Francisco López-Serrano14.1 Introduction 52114.2 Emulsion Polymerization 52214.2.1 Physicochemical Aspects 52214.2.1.1 Monomer Partitioning and Swelling in Polymer Colloids 52214.2.2 Formulation Components in Emulsion Polymerization 52314.2.2.1 Monomers 52314.2.2.2 Water 52314.2.2.3 Water-soluble Initiator 52414.2.2.4 Surfactants 52414.2.2.5 Chain Transfer Agents 52514.2.2.6 Other Components 52514.2.3 Overall Description of Emulsion Polymerization 52514.2.3.1 Nucleation Mechanisms 52514.2.3.2 Intervals of an Emulsion Polymerization 52914.2.3.3 Rate of Polymerization (Rp) 53014.2.3.4 Molar Mass 53314.2.4 Batch, Semibatch, and Continuous Processes 53314.2.5 Control of Number and Size Distribution of Particles 53414.2.6 Particle Morphology 53514.2.7 Latex Characterization 53514.2.7.1 Monomer Conversion 53514.2.7.2 Particle Size and PSD 53514.2.7.3 Particle Morphology 53614.3 Microemulsion Polymerization 53614.4 Miniemulsion Polymerization 53614.5 Applications of Polymer Latexes 53714.6 Dispersion and Precipitation Polymerizations 53814.7 Suspension Polymerization 53914.7.1 Generalities 53914.7.2 Some Issues About the Modeling of PSD in Suspension Polymerization 54014.8 Pickering Emulsions 542Acknowledgments 545References 54515 New Polymerization Processes 565Eduardo Vivaldo-Lima, Carlos Guerrero-Sánchez, Iraís A. Quintero-Ortega, Gabriel Luna-Bárcenas, Miguel Rosales-Guzmán, and Christian H. Hornung15.1 Introduction 56515.2 Polymerizations in Benign or Green Solvents 56615.2.1 Polymerizations in Compressed and Supercritical Fluids (SCFs) 56615.2.1.1 Phase Behavior of Polymer Systems in High-Pressure Fluids 56615.2.1.2 Earlier High-Pressure Polymerization Processes 56915.2.1.3 Polymerization in Supercritical Carbon Dioxide (scCO2) 56915.2.1.4 Polymerization in Other Compressed Green Solvents 57015.2.2 Polymerizations in Ionic Liquids 57115.3 Alternative Energy Sources for Polymerization Processes 57315.3.1 Microwave-Activated Polymerization 57315.3.2 Polymerization Under Irradiation of Other Wavelengths 57415.4 Polymerization in Microreactors 57515.5 Photochemistry in Reversible-Deactivation Radical Polymerizations 57715.6 High-Throughput/-Output Experimentation in Polymer Science 57815.7 Scale-Up or Commercial Production of New Polymers or New Chemical Routes for Existent Polymers (e.g. Enzymatic Polymerizations; Superacid Catalyzed Polymerizations; Synthesis of Hybrid Materials; Etc.) 57915.8 Polymerization in Deep Eutectic Solvents 58015.8.1 Free-Radical Polymerizations 58115.8.2 RDRP 58115.8.3 Hydrogels 58115.8.4 Perspectives 581Acknowledgments 582References 58216 Enzymatic Polymerization and Processing 597Miquel Gimeno, Miguel Angel Pimentel, and Eduardo Bárzana16.1 Advantages of Enzymes as Robust Catalysts in Synthesis 59716.1.1 Superb Activity and Specificity 59716.1.2 Innocuous to the Environment 59816.1.3 Obtained from Natural Sources 59816.1.4 Constantly Improved by Molecular Biology Methods 59816.2 Enzyme Sources and Their Conditioning 59916.2.1 Microbial Fermentation and Bioseparation 59916.2.2 Enzyme Immobilization 59916.3 The Breakthrough: The Ability of Enzymes to Perform in Nonaqueous Environments 60116.3.1 First Reports and Critical Issues on Enzyme Catalysis in Nonaqueous Media 60116.4 Main Enzyme Groups for a Diverse Set of Polymers 60316.4.1 Oxidoreductases (EC 1) 60316.4.2 Transferases (EC 2) 60416.4.3 Hydrolases (EC 3) 60416.5 The New Frontier. Enzyme Synthesis in Compressed Fluids as Green Solvents 60616.5.1 1,1,1,2-Tetrafluoroethane 60816.6 Dealing with Polar Polymers: Novel Media and Processing 60916.6.1 Ionic Liquids 60916.6.2 Deep Eutectic Solvents 61016.7 Current Industrial Processes and Perspectives 61116.7.1 Poly(lactic Acid), Its Copolymers and Other Polyesters 61116.8 Enzymatic Modification and Functionalization of Polymers to Reach New Properties 61216.8.1 Novel Properties 61216.8.2 Antimicrobial Polymers 61316.9 Contribution of Enzymes to Circular Bioeconomy: Synthesis and Depolymerization 61416.10 Conclusions and Perspectives 615References 61517 Renewable Monomer and Polymer Synthesis 625Héctor Ricardo López-González, Teresa Córdova, and Ramón Díaz de León17.1 Introduction 62517.2 Biopolymers, Bio-Based Polymers, Biodegradable Polymers, and Biocomposites 62617.2.1 Biopolymers 62617.2.2 Bio-Based Polymers 62617.2.3 Biocomposites 62717.3 Bio-Based Monomers for Polymer Synthesis 62717.3.1 Bio-Monomers from Biomass 62717.3.2 Chemical Platforms for Bio-Based Monomer Synthesis Derived from Lignocellulosic Biomass 62817.3.2.1 Diols and Polyols as a Chemical Platform 62917.3.2.2 Furane-Derived Chemical Platform 63117.3.3 Chemical Platforms for Bio-Based Monomers Derived from Vegetable Oils 63317.3.4 Chemical Platforms for Bio-Based Monomers and Polymers Derived from Terpenes 63417.4 Polymers Derived from Bio-Based Monomers 63917.4.1 Polyesters 63917.4.1.1 Polylactic Acid (PLA) 63917.4.1.2 Poly(butylene succinate) (PBS) 64017.4.1.3 Furane-Based Polyesters 64117.4.1.4 Polyurethanes 641References 642Index 655
Du kanske också är intresserad av
Handbook of Polymer Synthesis, Characterization, and Processing
Enrique Saldivar-Guerra, Eduardo Vivaldo-Lima, Mexico) Saldivar-Guerra, Enrique (Center for Research in Applied Chemistry (CIQA), Canada) Vivaldo-Lima, Eduardo (Universidad Nacional Autonoma de M¿xico (UNAM), Mexico; University of Waterloo
3 739 kr
Polymer Science, Engineering, and Sustainability, Volume 2
Enrique Saldivar-Guerra, Eduardo Vivaldo-Lima, Mexico) Saldivar-Guerra, Enrique (Center for Research in Applied Chemistry (CIQA), Canada) Vivaldo-Lima, Eduardo (Universidad Nacional Autonoma de M?xico (UNAM), Mexico; University of Waterloo
3 849 kr