Polymer Morphology
Principles, Characterization, and Processing
Inbunden, Engelska, 2016
Av Qipeng Guo
2 799 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.With a focus on structure-property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods.• Provides an up-to-date, comprehensive introduction to the principles and practices of polymer morphology• Illustrates major structure types, such as semicrystalline morphology, surface-induced polymer crystallization, phase separation, self-assembly, deformation, and surface topography• Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites• Discusses a broad range of advanced and novel techniques and methods, like x-ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials
Produktinformation
- Utgivningsdatum2016-06-24
- Mått218 x 282 x 33 mm
- Vikt1 361 g
- FormatInbunden
- SpråkEngelska
- Antal sidor464
- FörlagJohn Wiley & Sons Inc
- ISBN9781118452158
Tillhör följande kategorier
Qipeng Guo, DSc, DEng, is the chair professor in polymer science and technology at Deakin University, Australia, where he was awarded a Personal Chair in recognition of his distinguished achievements and international reputation in polymer research, involving both the fundamental principles in polymer science and the development of new polymer materials. He is a Fellow of The Royal Society of Chemistry.
- PREFACE xiiiLIST OF CONTRIBUTORS xvPART I PRINCIPLES AND METHODS OF CHARACTERIZATION 11 Overview and Prospects of Polymer Morphology 3Jerold M. Schultz1.1 Introductory Remarks 31.2 Experimental Avenues of Morphological Research 41.2.1 Morphological Characterization: The Enabling of in situ Measurements 41.2.2 Morphology–Property Investigation 51.2.3 Morphology Development 71.3 Modeling and Simulation 81.3.1 Self-Generated Fields 91.4 Wishful Thinking 111.5 Summary 11References 122 X-ray Diffraction from Polymers 14N. Sanjeeva Murthy2.1 Introduction 142.2 Basic Principles 142.3 Instrumentation 162.4 Structure Determination 172.4.1 Lattice Dimensions 172.4.2 Molecular Modeling 182.4.3 Rietveld Method 182.4.4 Pair Distribution Functions 182.5 Phase Analysis 192.5.1 Crystallinity Determination 202.5.2 Composition Analysis 212.6 Crystallite Size and Disorder 212.7 Orientation Analysis 222.7.1 Crystalline Orientation 222.7.2 Uniaxial Orientation 222.7.3 Biaxial Orientation 242.7.4 Amorphous Orientation 252.8 Small-Angle Scattering 252.8.1 Central Diffuse Scattering 262.8.2 Discrete Reflections from Lamellar Structures 272.8.3 Small-Angle Neutron Scattering and Solvent Diffusion 292.9 Specialized Measurements 302.9.1 In situ Experiments 302.9.2 Microbeam Diffraction 312.9.3 Grazing Incidence Diffraction 322.10 Summary 33References 333 Electron Microscopy of Polymers 37Goerg H. Michler and Werner Lebek3.1 Introduction 373.2 Microscopic Techniques 373.2.1 Scanning Electron Microscopy (SEM) 373.2.2 Transmission Electron Microscopy (TEM) 423.2.3 Comparison of Different Microscopic Techniques 453.2.4 Image Processing and Image Analysis 463.3 Sample Preparation 473.4 In situ Microscopy 50References 524 Characterization of Polymer Morphology by Scattering Techniques 54Jean-Michel Guenet4.1 Introduction 544.2 A Short Theoretical Presentation 554.2.1 General Expressions 554.2.2 The Form Factor 564.3 Experimental Aspects 604.3.1 The Contrast Factor 604.3.2 Experimental Setup 614.4 Typical Results 624.4.1 Neutrons Experiments: A Contrast Variation Story 624.4.2 X-Ray Experiments: A Time-Resolved Story 674.5 Concluding Remarks 69References 695 Differential Scanning Calorimetry of Polymers 72Alejandro J. Müller and Rose Mary Michell5.1 Introduction to Differential Scanning Calorimetry. Basic Principles and Types of DSC Equipment 725.2 Detection of First-Order and Second-Order Transitions by DSC. Applications of Standard DSC Experiments to the Determination of the Glass Transition Temperature and the Melting Temperature of Polymeric Materials 745.3 Self-Nucleation 755.3.1 Quantification of the Nucleation Efficiency 775.4 Thermal Fractionation 785.5 Multiphasic Materials: Polymer Blends and Block Copolymers. Fractionated Crystallization and Confinement Effects 815.5.1 Blends and Fractionated Crystallization 815.5.2 Copolymers 855.5.3 Copolymers Versus Blends 875.5.4 The Crystallization of Polymers and Copolymers within Nanoporous Templates 885.6 Self-Nucleation and the Efficiency Scale to Evaluate Nucleation Power 915.6.1 Supernucleation 935.7 Determination of Overall Isothermal Crystallization by DSC 955.8 Conclusions 95Acknowledgment 95References 956 Imaging Polymer Morphology using Atomic Force Microscopy 100Holger Schönherr6.1 Introduction 1006.2 Fundamental AFM Techniques 1016.2.1 Contact Mode AFM 1016.2.2 Intermittent Contact (Tapping) Mode AFM 1046.2.3 Further Dynamic AFM Modes 1056.3 Imaging of Polymer Morphology 1076.3.1 Single Polymer Chains 1076.3.2 Crystal Structures 1076.3.3 Lamellar Crystals 1096.3.4 Spherulites 1096.3.5 Multiphase Systems 1096.3.6 Polymeric Nanostructures 1116.4 Property Mapping 1136.4.1 Nanomechanical Properties 1136.4.2 Scanning Thermal Microscopy 115References 1157 FTIR Imaging of Polymeric Materials 118S. G. Kazarian and K. L. A. Chan7.1 Introduction 1187.2 Principles of FTIR Imaging 1187.3 Sampling Methods 1207.3.1 Transmission Mode 1207.3.2 Attenuated Total Reflection (ATR) Mode 1217.4 Spatial Resolution 1227.4.1 Transmission FTIR Imaging 1237.4.2 ATR–FTIR Spectroscopic Imaging 1237.5 Recent Applications 1247.5.1 Polymer Blends 1247.5.2 Polymer Processes 1257.5.3 Polarized FTIR Imaging for Orientation Studies 1267.6 Conclusions 127References 1288 NMR Analysis of Morphology and Structure of Polymers 131Takeshi Yamanobe and Hiroki Uehara8.1 Introduction 1318.2 Basic Concepts in NMR 1318.2.1 Principles of NMR 1318.2.2 Analysis of the Free Induction Decay (FID) 1328.3 Morphology and Relaxation Behavior of Polyethylene 1348.3.1 Morphology and Molecular Mobility 1348.3.2 Lamellar Thickening by Annealing 1348.3.3 Entanglement in the Amorphous Phase 1368.4 Morphology and Structure of the Nascent Powders 1378.4.1 Etching by Fuming Nitric Acid 1378.4.2 Structural Change by Annealing 1388.4.3 Nascent Isotactic Polypropylene Powder 1398.5 Kinetics of Dynamic Process of Polymers 1418.5.1 Melt Drawing of Polyethylene 1418.5.2 Crystallization Mechanism of Nylon 46 1438.5.3 Degree of Curing of Novolac Resins 1458.6 Conclusions 146References 146PART II MORPHOLOGY PROPERTIES AND PROCESSING 1519 Small-Angle X-ray Scattering for Morphological Analysis of Semicrystalline Polymers 153Anne Seidlitz and Thomas Thurn-Albrecht9.1 Introduction 1539.2 Small-angle X-ray Scattering 1539.2.1 Typical Experimental Setup 1539.2.2 Basic Formalism Describing the Relation between Real-Space Structure and Scattering Intensity in a SAXS Experiment 1549.2.3 Methods of Analysis Used for SAXS on Semicrystalline Polymers 1559.3 Concluding Remarks 162Appendix: Calculation of the Model Function KÞ ′′ sim(s) 163References 16310 Crystalline Morphology of Homopolymers and Block Copolymers 165Shuichi Nojima and Hironori Marubayashi10.1 Introduction 16510.2 Crystalline Morphology of Homopolymers 16510.2.1 Crystal Structure 16510.2.2 Lamellar Morphology 16710.2.3 Spherulite Structure 16810.2.4 Crystalline Morphology of Homopolymers Confined in Isolated Nanodomains 16810.2.5 Crystalline Morphology of Polymer Blends 16910.3 Crystalline Morphology of Block Copolymers 17110.3.1 Crystalline Morphology of Weakly Segregated Block Copolymers 17210.3.2 Crystalline Morphology of Block Copolymers with Glassy Amorphous Blocks 17310.3.3 Crystalline Morphology of Strongly Segregated Block Copolymers 17410.3.4 Crystalline Morphology of Double Crystalline Block Copolymers 17510.4 Concluding Remarks 176References 17611 Isothermal Crystallization Kinetics of Polymers 181Alejandro J. Müller Rose Mary Michell and Arnaldo T. Lorenzo11.1 Introduction 18111.2 Crystallization Process 18211.3 Crystallization Kinetics 18211.3.1 The Avrami Equation [31] 18311.3.2 Nucleation and Crystal Growth: Lauritzen–Hofmann Theory 18811.4 Isothermal Crystallization Kinetics–Morphology Relationship 19111.4.1 Linear PS-b-PCL versus Miktoarm (PS2)-b-(PCL2) Block Copolymers 19111.4.2 Crystallization Kinetics and Morphology of PLLA-b-PCL Diblock Copolymers 19411.4.3 Nucleation and Crystallization Kinetics of Double Crystalline Polyethylene/Polyamide (PE/PA) Blends 19611.4.4 Crystallization Kinetics of Poly(𝜀-Caprolactone)/Carbon Nanotubes (PCL/CNTs) Blends 20011.5 Conclusions 201Acknowledgments 201References 20112 Surface-induced Polymer Crystallization 204Xiaoli Sun and Shouke Yan12.1 Introduction 20412.2 Influence of Foreign Surface on the Crystallization Kinetics of Polymers 20512.3 Influence of Foreign Surface on the Crystal Structure and Morphology of Polymers 20512.3.1 Crystallization of Thin Polymer Films on Amorphous Foreign Surface 20512.3.2 Crystallization of Polymer Thin Films on Crystalline Foreign Surface with Special Crystallographic Interaction 20912.4 Bulk Crystallization of Polymers in Contact with a Foreign Surface 22612.5 Summary 234References 23513 Thermodynamics and Kinetics of Polymer Crystallization 242Wenbing Hu and Liyun Zha13.1 Introduction 24213.2 Thermodynamics of Polymer Crystallization 24213.3 Crystal Nucleation 24713.4 Crystal Growth 25113.5 Crystal Annealing 25413.6 Summary 255References 25614 Self-Assembly and Morphology in Block Copolymer Systems with Specific Interactions 259Anbazhagan Palanisamy and Qipeng Guo14.1 Introduction 25914.2 Block Copolymer Systems with Hydrogen Bonding Interaction in Solid State 26014.2.1 Diblock Copolymer/Homopolymer Systems 26014.2.2 Diblock/Triblock Copolymer Systems 26414.3 Block Copolymer Systems with Hydrogen-Bonding Interaction in Solution 26814.3.1 Single-Component Block Copolymer Systems 26814.3.2 Diblock Copolymer/Homopolymer Systems 26914.3.3 Diblock/Diblock Copolymer Systems 27114.3.4 Triblock Copolymer Systems 27514.4 Block Copolymer Systems with Ionic Interaction 27514.4.1 Diblock Copolymer/Homopolymer Systems 27514.4.2 Diblock/Triblock Copolymer Systems 27614.5 Block Copolymer Blends via Metal–Ligand Coordination Bonds 27814.6 Concluding Remarks 278References 27915 Dynamics Simulations of Microphase Separation in Block Copolymers 283Xuehao He Xuejin Li Peng Chen and Haojun Liang15.1 Introduction 28315.2 Polymer Model and Simulation Algorithm 28415.2.1 Monte Carlo Method 28415.2.2 Dissipative Particle Dynamics Method 28515.2.3 Polymeric Self-Consistent Field Theory 28615.3 Dynamics of Self-Assembly of Block Copolymers 28715.3.1 Phase Separation of Linear Block Copolymers 28715.3.2 Self-Assembly of Star Block Copolymers in Melt 28715.3.3 Self-Assembly of Block Copolymers in Constrained Systems 28915.3.4 Micellization of Amphiphilic Block Copolymer in Solution 29215.4 Outlook 294References 29516 Morphology Control of Polymer thin Films 299Jiangang Liu Xinhong Yu Longjian Xue and Yanchun Han16.1 Wetting 29916.1.1 Dewetting Mechanisms 30016.1.2 Dewetting Dynamics 30116.1.3 Rim Instability 30316.1.4 Factors Affecting the Stability of Polymer Thin Films 30316.2 Thin Film of Polymer Blend 30416.2.1 Fundamentals of Polymer Blends 30516.2.2 Phase Separation in Thin Polymer Films 30616.3 The Introduction of Polymer Blend Film in Solar Cells 30716.3.1 Establish Interpenetrating Network Structure by Controlling Phase Separation 30816.3.2 Control the Domain Size and Purify of the Domains 31016.3.3 Adjust the Diffused Structure at the Interface Between Donor and Acceptor 31216.3.4 Construct the Relationship Between Film Morphology and Device Performance 31216.4 Summary and Outlook 313References 31317 Polymer Surface Topography and Nanomechanical Mapping 317Hao Liu So Fujinami Dong Wang Ken Nakajima and Toshio Nishi17.1 Introduction 31717.2 Contact Mechanics 31717.2.1 Hertzian Theory (Repulsion between Elastic Bodies) 31817.2.2 Bradley Model (Interaction between Rigid Bodies) 31817.2.3 Johnson–Kendall–Roberts (JKR) Model 31817.2.4 Derjaguin–Muller–Toporov (DMT) Model 31917.2.5 The JKR–DMT transition and Maugis–Dugdale (MD) Model 31917.2.6 Adhesion Map 32017.3 Application of Contact Mechanics to Experimental Data 32117.3.1 Consideration of Contact Models 32117.3.2 Force–Distance Curve Conversion 32117.3.3 Analysis of Load–Indentation Curves 32217.3.4 Nanomechanical Mapping 32217.4 Application Examples 32317.4.1 Effect of Processing Conditions on Morphology and Mechanical Properties of Block Copolymers 32317.4.2 Measuring the Deformation of Both Ductile and Fragile Polymers 32517.4.3 Nanorheological AFM on Rubbers 32817.5 Conclusion 331References 33118 Polymer Morphology and Deformation Behavior 335Masanori Hara18.1 Introduction 33518.2 Deformation Behavior of Amorphous Polymers 33618.2.1 Deformation Behavior of Thin Films 33618.2.2 Deformation Behavior of Bulk Polymers 33818.3 Deformation Behavior of Semicrystalline Polymers 33918.3.1 Deformation of Unoriented Semicrystalline Polymers 34118.3.2 Strain Hardening and Network Density 34118.4 Deformation Behavior of Block Copolymers 34218.4.1 Block Copolymers Based on S and B 34318.4.2 Block Copolymers Based on E and C (CHE) 34518.5 Conclusions and Outlook 345References 34619 Morphology Development in Immiscible Polymer Blends 348Ruth Cardinaels and Paula Moldenaers19.1 Introduction 34819.2 Morphology Development in Bulk Flow 35019.2.1 Droplet–Matrix Structures 35019.2.2 Fibrillar Structures 35919.2.3 Cocontinuous Structures 36119.3 Recent Advances in Polymer Blends 36319.3.1 Immiscible Blends in Confined Flow 36319.3.2 Blend Compatibilization by Nanoparticles 36419.4 Conclusions 367Acknowledgments 368References 36820 Processing Structure and Morphology in Polymer Nanocomposites 374Duraccio Donatella Clara Silvestre Sossio Cimmino Antonella Marra and Marilena Pezzuto20.1 Overview 37420.2 Nanoparticles with One Dimension Less Than 100 nm (Layered Silicates) 37520.3 Nanoparticles with Two Dimensions Less Than 100 nm (Carbon Nanotubes) 37720.4 Nanoparticles with Three Dimensions Less Than 100 nm (Metal Metal Oxide) 38020.5 Preparative Methods 38220.5.1 Solution Processing 38220.5.2 In situ Polymerization 38320.5.3 Melt Processing 38420.5.4 In situ Sol–Gel Technology 38420.6 Structure and Morphology of Polymer Nanocomposites 38520.7 Concluding Remarks 388References 38821 Morphology and Gas Barrier Properties of Polymer Nanocomposites 397Abbas Ghanbari Marie-Claude Heuzey Pierre J. Carreau and Minh-Tan Ton-That21.1 Introduction 39721.2 Structure of Layered Silicates 39721.3 Morphologies of Polymer-Layered Silicate Composites 39821.4 Nanocomposite Preparation Methods 39821.5 Challenges of Thermal Degradation in Melt Intercalation 40021.6 Methods for Improving Gas Barrier Properties of Polymers 40321.7 Polyamide Nanocomposites 40521.8 Polyolefin Nanocomposites 40521.9 Pet Nanocomposites 40621.10 Polylactide Nanocomposites 41321.11 Conclusions and Perspectives 414References 41522 Features on the Development and Stability of Phase Morphology in Complex Multicomponent Polymeric Systems: Main Focus on Processing Aspects 418Charef Harrats Maria-Beatrice Coltelli and Gabriel Groeninckx22.1 Introduction 41822.2 Phase Morphology Development in Polymer Blends 41922.2.1 Droplet-in-Matrix (Dispersed) Phase Morphology 41922.2.2 Co-continuous Phase Morphology 41922.2.3 Phase Morphology in Ternary Blends 42022.3 Melt Processing of Polymer Blends 42322.3.1 Morphology Buildup during Processing 42322.3.2 Effects of Processing Parameters on Phase Morphology 42422.4 Chemistry Involved in Polymer Blends 42622.4.1 Effect of the Compatibilizer on Phase Morphology 42622.4.2 Formation in situ of the Compatibilizer 42722.4.3 Case of Reactive Ternary Blends 42922.4.4 Stability of Phase Morphology in Reactively Compatibilized Blends 43122.4.5 Organoclay-Promoted Phase Morphology 43322.4.6 Conclusions 435References 436INDEX 439