Physics of Waves
Häftad, Engelska, 2003
359 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Ideal as a classroom text or for individual study, this unique one-volume overview of classical wave theory covers wave phenomena of acoustics, optics, electromagnetic radiations, and more. Topics include fundamentals, Bessel functions, waveguides, elasticity theory, hydrodynamic waves, and special phenomenon of wave diffraction. With problems.
Produktinformation
- Utgivningsdatum2003-03-28
- Mått137 x 214 x 30 mm
- Vikt615 g
- FormatHäftad
- SpråkEngelska
- SerieDover Books on Physics
- Antal sidor512
- FörlagDover Publications Inc.
- ISBN9780486649269
Tillhör följande kategorier
- Preface1 Transverse Waves on a String1.1 The wave equation for an ideal stretched string1.2 A general solution of the one-dimensional wave equation1.3 Harmonic or sinusoidal waves1.4 Standing sinusoidal waves1.5 Solving the wave equation by the method of separation of variables1.6 The general motion of a finite string segment1.7 Fourier series1.8 Energy carried by waves on a string1.9 The reflection and transmission of waves at a discontinuity*1.10 Another derivation of the wave equation for strings*1.11 Momentum carried by a wave2 Waves on a Membrane2.1 The wave equation for a stretched membrane2.2 Standing waves on a rectangular membrane2.3 Standing waves on a circular membrane2.4 Interference phenomena with plane traveling waves3 Introduction to the Theory of Elasticity3.1 The elongation of a rod3.2 Volume changes in an elastic medium3.3 Shear distortion in a plane3.4 The torsion of round tubes and rods3.5 The statics of a simple beam3.6 The bending of a simple beam3.7 Helical springs4 One-dimensional Elastic Waves4.1 Longitudinal waves on a slender rod(a) The wave equation(b) Standing waves(c) Energy and power(d) Momentum transport4.2 The impedance concept4.3 Rods with varying cross-sectional area4.4 The effect of small perturbations on normal-mode frequencies4.5 Torsional waves on a round rod4.6 Transverse waves on a slender rod(a) The wave equation(b) Solution of the wave equation(c) Traveling waves(d) Normal-mode vibrations4.7 Phase and group velocity4.8 Waves on a helical spring*4.9 Perturbation calculations5 Acoustic Waves in Fluids5.1 The wave equation for fluids*5.2 The velocity of sound in gases5.3 Plane acoustic waves(a) Traveling sinusoidal waves(b) Standing waves of sound5.4 The cavity (Helmholtz) resonator5.5 Spherical acoustic waves5.6 Reflection and refraction at a plane interface5.7 Standing waves in a rectangular box5.8 The Doppler effect*5.9 The velocity potential*5.10 Shock Waves*6 Waves on a Liquid Surface6.1 Basic hydrodynamics(a) Kinematical equations(b) The equation of continuity(c) The Bernoulli equation6.2 Gravity waves6.3 Effect of surface tension6.4 Tidal waves and the tides(a) Tidal waves(b) Tide-generating forces(c) Equilibrium theory of tides(d) The dynamical theory of tides6.5 Energy and power relations*7 Elastic Waves in Solids7.1 Tensors and dyadics7.2 Strain as a dyadic7.3 Stress as a dyadic7.4 Hooke's law7.5 Waves in an isotropic medium(a) Irrotational waves(b) Solenoidal waves7.6 Energy relations*7.7 Momentum transport by a shear wave*8 Electromagnetic Waves8.1 Two-conductor transmission line(a) Circuit equations(b) Wave equation(c) Characteristic impedance(d) Reflection from terminal impedance(e) Impedance measurement8.2 Maxwell's equations8.3 Plane waves8.4 Electromagnetic energy and momentum8.5 Waves in a conducting medium8.6 Reflection and refraction at a plane interface(a) Boundary conditions(b) Normal incidence on a conductor(c) Oblique incidence on a nonconductor8.7 Waveguides(a) The vector wave equation(b) General solution for waveguides(c) Rectangular cross section*(d) Circular cross section8.8 Propagation in ionized gases8.9 Spherical waves9 Wave Propagation in Inhomogeneous and Obstructed Media9.1 The WKB approximation9.2 Geometrical optics9.3 The Huygens-Fresnel principle9.4 Kirchhoff diffraction theory(a) Green's theorem(b) The Helmholtz-Kirchhoff theorem(c) Kirchoff boundary conditions9.5 Diffraction of transverse waves*9.6 Young's formulation of diffraction10 Fraunhofer Diffraction10.1 The paraxial approximation10.2 The Fraunhofer limit10.3 The rectangular aperture10.4 The single slit10.5 The circular aperture10.6 The double slit10.7 Multiple slits*10.8 Practical diffraction gratings for spectral analysis(a) Gratings of arbitrary periodic structure(b) The grating equation(c) Dispersion(d) Resolving power*10.9 Two-dimensional gratings*10.10 Three-dimensional gratings11 Fresnel Diffraction11.1 Fresnel zones(a) Circular zones(b) Off-axis diffraction(c) Linear zones11.2 The rectangular aperture(a) Geometry and notation(b) The Cornu spiral11.3 The linear slit11.4 The straight edge12 Spectrum Analysis of Waveforms12.1 Nonsinusoidal periodic waves12.2 Nonrecurrent waves12.3 Amplitude-modulated waves12.4 Phase-modulated waves12.5 The motion of a wave packet in a dispersive medium12.6 The Fourier transform method12.7 Properties of transfer functions12.8 Partial coherence in a wavefieldAppendixesA. Vector calculusB. The Smith calculatorC. Proof of the uncertainty relationIndex