Hoppa till sidans huvudinnehåll

Physics-Generated AIs of Robust Nonlinear Filter and Control Designs for Complicated Man-Made Machines

  • Nyhet

Inbunden, Engelska, 2026

AvBor-Sen Chen

3 189 kr

Kommande


This book introduces a robust H∞ physics-generated AI-driven filter and controller, along with a nonlinear Luenberger observer model and a state estimation error dynamic model, to effectively address HJIEs for robust H∞ state estimation (filtering) and reference trajectory tracking control in nonlinear stochastic systems. Additionally, it presents a method for training deep neural networks (DNNs) using these models, alongside a physics-generated AI-driven observer-based reference tracking control scheme, with applications in the guidance and control of relevant systems.Key features:Provides theoretical analysis and detailed design procedure for physics-generated AI-driven H∞ or mixed H2/H∞ filterApplies physics-generated AI-driven robust H∞ or mixed H2/H∞ filter and reference tracking control schemes to the trajectory estimation and reference tracking control of man-made machinesIntroduces physics-generated AI-driven decentralized H∞ observer-based team formation tracking control of large-scale quadrotor UAVs, biped robots or LEO satellitesPromulgates the idea of the forthcoming age of physics-generated AI in robotDescribes robust physics-generated AI-driven filter and control schemes for complex man-made machinesThis book is aimed at graduate students and researchers in control science, signal processing and artificial intelligence.

Produktinformation

  • Utgivningsdatum2026-03-18
  • Mått156 x 234 x 25 mm
  • Vikt798 g
  • FormatInbunden
  • SpråkEngelska
  • Antal sidor436
  • FörlagTaylor & Francis Ltd
  • ISBN9781041129349