Photo- and Electro-Catalytic Processes
Water Splitting, N2 Fixing, CO2 Reduction
Inbunden, Engelska, 2022
Av Jianmin Ma
2 559 kr
Produktinformation
- Utgivningsdatum2022-02-16
- Mått170 x 244 x 32 mm
- Vikt1 247 g
- FormatInbunden
- SpråkEngelska
- Antal sidor592
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527348596
Tillhör följande kategorier
Jianmin Ma is the professor in the University of Electronic Science and Technology of China. He received his B.S. degree in Chemistry from the Shanxi Normal University in 2003 and Ph.D. degree in Materials Physics and Chemistry from Nankai University in 2011. During 2011–2015, he also conducted the research in several overseas universities as a postdoctoral research associate. He serves as the Academic Editor for Rare Metals, the Associate Editor for Chinese Chemical Letters, Chair and editorial board member for Journal of Energy Chemistry, Nano-Micro Letters, Journal of Physics: Condensed Matter, JPhys Energy, and others. His research interest focuses on energy storage devices and components including metal anodes and electrolytes, and theoretical calculations from Density Functional Theory and Molecular Dynamics to Finite Element Analysis.
- Preface xiii1 Oxygen Reduction Reaction Electrocatalysts 1Xinwen Peng and Lei Zhang1.1 Introduction 11.2 Pt-Based ORR Electrocatalysts 21.2.1 Facet-Controlled Catalysts 21.2.2 Multimetallic Nanocrystals 31.2.2.1 Pt Alloys 31.2.2.2 Supported-Enhanced Catalysts 61.3 Transition-Metal-Based Materials 101.3.1 Metals and Alloys 101.3.2 Transition Metal Oxides/Sulfides 121.4 Atomically Dispersed Metal in Carbon Materials 191.5 Metal-Free ORR Electrocatalysts 231.6 Conclusion 25References 262 Electrocatalytic Oxygen Evolution Reaction 35Guanyu Liu and Joel W. Ager2.1 Introduction 352.2 Bioinspiration: OER in Photosystem II 362.3 Fundamentals of Electrocatalytic OER 362.3.1 Electrode Substrate 372.3.2 Electrolyte 382.3.3 Onset Potential and Overpotential 382.3.4 Tafel Analysis of the Rate-Determining Step 382.3.5 pH Dependence: The Nernst Equation 392.3.6 Long-Term Stability 412.3.7 Other Parameters 412.4 Reaction Mechanisms 412.4.1 WNA Mechanism 422.4.2 I2M Mechanism 442.5 OER Catalysts 442.5.1 Molecular OER Catalysts 442.5.1.1 Ru- and Ir-Based Molecular Catalysts 452.5.1.2 Earth-Abundant Transition Metal-Based Molecular Catalysts 462.5.1.3 Stabilization Strategies for Molecular Catalysts 472.5.1.4 All-Inorganic Polyoxometalates 482.5.2 Heterogeneous OER Catalysts 482.5.2.1 Metal Oxides 482.5.2.2 (Oxy)Hydroxides and Double Hydroxides 542.5.2.3 Metal Chalcogenides 552.5.2.4 Metal Pnictides 572.5.2.5 Carbon-Based Materials 582.5.2.6 Crystalline Frameworks and Their Derivatives 592.6 Challenges for Practical Catalytic Electrodes for OER 622.6.1 Industrially Viable Fabrication Techniques 622.6.2 Gas Bubble Formation on the Surface of Electrodes 622.6.3 Novel Approaches Toward Catalyst Discovery 652.7 Conclusions 67References 683 Electrochemical Hydrogen Evolution Reaction 87Guoqiang Zhao and Wenping Sun3.1 Introduction 873.2 HER Mechanism 893.2.1 HER Mechanism in Acid Media 893.2.2 HER Mechanism in Alkaline Media 933.3 Key Parameters for Evaluating Catalytic Activity 963.3.1 Overpotential 963.3.2 Turnover Frequency 973.4 PGMs-Based Electrocatalysts 983.4.1 PGM Alloys 993.4.2 PGM Heterostructured Electrocatalysts 1013.4.3 PGM Single-Atom Electrocatalysts 1063.5 PGM-Free Materials 1083.5.1 2D Transition Metal Dichalcogenides 1083.5.2 Transition Metal Phosphorus/Nitrides/Carbides 1113.5.3 PGM-Free Heterostructured Electrocatalysts 1123.6 Summary 117References 1184 Electrocatalytic Water Splitting 123Suraj Gupta4.1 Introduction 1234.2 Fundamental Concepts 1244.2.1 Electric Double Layer 1244.2.2 Standard Electrode Potential 1254.2.3 Overpotential 1294.2.4 Electrode Kinetics 1294.3 Industrial Systems for Electrocatalytic Water Splitting 1334.3.1 Alkaline Water Electrolyzers 1334.3.2 Proton Exchange Membrane Water Electrolyzers 1354.3.2.1 Membrane Electrode Assembly 1364.3.2.2 Current Collectors 1374.3.2.3 Bipolar/Separator Plates 1384.3.3 Zero-Gap AWE 1384.3.4 Comparing PEMWE and AWE 1394.3.5 Other Types of Water Electrolyzers 1414.3.5.1 Solid Oxide Electrolyzers 1414.3.5.2 Microbial Electrolyzers (MEs) 1444.4 Electrocatalysts for HER and OER 1454.5 Electrocatalytic Seawater Splitting 1474.5.1 Demographic Analysis 1474.5.2 Challenges in Electrocatalytic Seawater Splitting 1474.5.3 State-of-the-Art 1514.5.4 Prospects for Electrocatalytic Splitting of Seawater 1534.6 Conclusions 154References 1545 Electrochemical Carbon Dioxide Reduction Reaction 159Yating Zhu, Congyong Wang, Zengqiang Gao, Junjun Li, and Zhicheng Zhang5.1 Introduction 1595.2 Principles 1605.2.1 The Conversion of CO2 to C1 Products 1605.2.2 The Conversion of CO2 to Multi-Carbon Products 1615.3 Materials for Electrochemical CO2RR 1635.3.1 Metallic Materials 1635.3.1.1 Transition Metallic Materials 1635.3.1.2 Other Metallic Materials 1655.3.2 Carbon Materials 1655.3.2.1 Carbon Nanofibers 1675.3.2.2 Carbon Nanotubes 1675.3.2.3 Mesoporous Carbon 1685.3.2.4 Graphene (Graphene Quantum Dots) 1685.3.2.5 Diamond 1705.3.3 Organic Framework Materials 1715.3.3.1 Metal–Organic Frameworks 1725.3.3.2 Covalent Organic Frameworks 1765.4 Conclusion 178References 1806 Electrochemical N2 Reduction 183Yulu Yang, Jiandong Liu, Huapin Wang, and Jianmin Ma6.1 Introduction 1836.2 Fundamentals of Electrocatalytic Nitrogen Reduction 1846.3 Product Detection and Efficiency Evaluation 1866.4 NRR Catalysts 1886.4.1 Noble Metal Catalysts 1886.4.1.1 Au Base Catalyst 1886.4.1.2 Ru Base Catalyst 1906.4.1.3 Pd Base Catalyst 1916.4.1.4 Pt Base Catalyst 1916.4.2 Non-noble Metal Catalyst 1916.4.2.1 Mo Base Catalyst 1946.4.2.2 Ni, Co and Fe Base Catalyst 1976.4.2.3 Metal-Free Catalysts 1976.4.3 Monatomic Catalysts 1976.5 Conclusion and Prospects 202References 2027 Photoelectrochemical Water Splitting 205Yangqin Gao, Ge Lei, Zhijie Tian, Hongying Zhu, and Lianzheng Ma7.1 Introduction 2057.2 Photoelectrochemical Cells 2087.2.1 Water Splitting 2097.2.2 Types of Photoelectrochemical Devices 2097.2.2.1 Photoelectrolysis Cell 2107.2.2.2 Photo-Assisted Electrolysis Cell 2107.2.2.3 Photovoltaic Electrolysis Cell 2107.3 Basic Concepts in Semiconductors 2117.3.1 Electronic Properties of Semiconductors 2117.3.2 Optical Properties of Semiconductors 2187.3.3 Quasi Thermal Equilibrium and Quasi Fermi Level Splitting 2227.4 General Properties of a Semiconductor/Liquid Junction 2247.4.1 Equilibrium State at a Semiconductor/Liquid Junction 2247.4.2 Charge Transfer at a Semiconductor/Liquid Junction 2297.5 The Current-Voltage Behaviours of a Semiconductor/Liquid Junction 2317.5.1 The Current-Voltage Characteristics of a Semiconductor/Liquid Junction in Dark 2317.5.2 The Current-Voltage Characteristics of a Semiconductor/Liquid Junction under Illumination 2337.6 Energy Conversion Efficiency 2347.7 Summary 235References 2368 Photoelectrocatalytic Solar Water Splitting 241Deyu Liu and Yongbo Kuang8.1 Introduction 2418.2 Basic Concepts of Nonbiased PEC System 2428.2.1 Thermodynamics of PEC System 2428.2.2 Photoelectrodes and Photoelectrochemical Cells 2448.2.3 Unbiased PEC Solar Water Splitting Cells 2458.2.4 Selection of Semiconducting Materials 2468.3 Design of Photoelectrodes from System-Wide View 2508.3.1 From Semiconductor Materials to Photoelectrodes 2508.3.2 Parameters of the Photoelectrodes 2528.3.3 Functionalization Layers and Cocatalysts 2558.3.4 Testing and Operation Conditions 2588.4 Design of Integrated PEC Systems 2618.5 Techno-Economic Assessment 2648.6 Summary and Overlook 268References 2719 Photoelectrochemical Reduction of CO2 275Yuchen Qin and Haoyi Wu9.1 Introduction 2759.2 Fundamental Principles of PEC CO2 Reduction 2769.2.1 Mechanism 2769.2.2 Reaction Conditions 2779.2.2.1 pH Value 2779.2.2.2 Electrolyte Type 2779.2.2.3 Reaction Temperature and Pressure 2789.2.3 Evaluation Parameters for PEC CO2 Reduction 2789.2.3.1 Product Evolution Rate and Catalytic Current Density 2789.2.3.2 Faradaic Efficiency 2789.2.3.3 Turnover Number and Turnover Frequency 2789.2.3.4 Quantum Yield 2799.3 Strengthen Strategies for PEC CO2 Reduction 2799.3.1 Advanced Design for Photoelectrode 2799.3.1.1 Photocathodes and Dark Anodes 2799.3.1.2 Photoanodes and Dark Cathodes 2859.3.1.3 Photoanodes and Photocathodes 2869.3.1.4 PEC-Photovoltaic Cell Tandem and Wireless Monolithic Devices 2869.3.2 PEC Reactor Configuration 2879.3.2.1 Light Source 2889.3.2.2 Heat Transfer 2899.3.2.3 Utilization of CO2 2899.3.2.4 Classification of Reactors 2899.4 Summary and Perspectives 289References 29210 Photoelectrochemical Oxygen Evolution 301Hoi Ying Chung, Hao Wu, Xuelian Wu, Chenliang Su, and Yun Hau Ng10.1 Introduction of Photoelectrochemical Oxygen Evolution 30110.2 Working Principles of Photoelectrochemical Oxygen Evolution 30210.3 Promising Visible Light Active Photoanode for PEC Oxygen Evolution 30510.3.1 Tungsten Oxide (WO3) Photoanode 30510.3.2 Hematite (α-Fe2O3) Photoanode 30810.3.3 Bismuth-Based Ternary Oxide Photoanode 31110.3.3.1 Bismuth vanadate (BiVO4) 31210.3.3.2 Bismuth Tungstate (Bi2WO6) 31910.3.3.3 Bismuth Molybdate (Bi2MoO6) 32210.3.4 Tantalum Oxynitride (TaON) and Tantalum Nitride (Ta3N5) 32410.4 Summary and Outlook 328References 32911 Photoelectrochemical Nitrogen Reduction Reaction 339Gnanaprakasam Janani, Subramani Surendran, Hyeonuk Choi, and Uk Sim11.1 Introduction 33911.2 Nitrogen Reduction Reaction 34111.3 Photoelectrochemistry for Provision of Sustainable Energy Sources 34211.4 Fundamentals of Photoelectrochemical Nitrogen Reduction Reaction (PEC NRR) 34411.5 Hitches in NRR 34711.5.1 Semiconductor Considerations 34711.5.2 H2 Evolution Reaction and Selectivity 34811.6 Mechanisms 35011.7 Contribution of Catalysts in PEC NRR 35211.7.1 Semiconductors 35211.7.2 Plasmon-Induced Ammonia Synthesis 36011.7.3 Black Phosphorus-based Catalysts 36611.7.4 Role of Diamond 36711.8 Beyond Conventional Catalysts 36911.8.1 Electrolytes 37011.8.2 Diffusion of N2 Gas 37011.8.3 Prototypes 37011.8.4 N2 Adsorption and Activation on the Catalyst Surface 37111.9 Methods to Measure Ammonia 37311.9.1 Colorimetric Method 37311.9.2 Ion Chromatography Method 37411.9.3 Ion-Selective Electrode Method 37411.9.4 Fluorometric Method 37511.9.5 Conductivity Method 37511.9.6 Titrimetric Method 37611.9.7 In situ Fourier Transform Infrared spectroscopy 37611.9.8 Nuclear Magnetic Resonance 37611.10 Formulas 37711.11 From the Holy Grail to Practical Systems 37711.12 Conclusion 378References 37812 Photocatalytic Oxygen Reduction 389Hai-Ying Jiang and Xianguang Meng12.1 Formation of ROS 38912.2 Detection of ROS 39312.2.1 Detection of 1O2 39312.2.2 Detection of O−⋅2 39412.3 Detection of H2O2 39712.3.1 DPD–POD Method 39712.3.2 DMP Method 39812.4 Detection of ⋅OH 39812.5 Applications of Photocatalytic Oxygen Reduction 40212.5.1 Synthetic Applications 40312.5.2 Environmental Applications 40412.5.3 Photocatalytic H2O2 Synthesis 405References 40913 Photocatalytic Hydrogen Production 415Zhen Li, Mengqing Hu, Yanqi Xu, Di Zhao, Shuaiyu Jiang, Kaicai Fan, Meng Zu, Mohammad Al-Mamun, Huajie Yin, Shan Chen, Yuhai Dou, Lei Zhang, Yu L. Zhong, Yun Wang, Shanqing Zhang, Porun Liu, and Huijun Zhao13.1 Introduction 41513.2 Fundamental of Heterogeneous Photocatalysis 41613.2.1 History of Photocatalysis Hydrogen Evolution and Current Status 41613.2.2 Thermodynamics of Photocatalytic Processes for Hydrogen Evolution 42013.2.3 Evaluation Criteria of Efficiency for Photocatalytic Hydrogen Evolution 42213.2.4 Key Parameters of Photocatalytic Processes 42313.3 Enhancement for One-Step Photoexcitation for PCHER 42513.3.1 Band Structure 42513.3.2 Exposed Facet Engineering 42713.3.3 Control on Microstructure and Surface Area 42913.3.4 Doping /Vacancies/Defects 43113.3.4.1 Metal Doping 43213.3.4.2 Non-Metal Doping 43313.3.4.3 Vacancies/Defects 43513.3.5 Hole Scavenger 43613.3.5.1 Inorganic Salts and Organic Salts 43613.3.5.2 Organic Compounds 43713.3.5.3 Lignocellulosic Biomass 43913.4 Enhancement for Two-step Photoexcitation for PCHER 44013.4.1 Surface Sensitization 44213.4.1.1 Semiconductors Act as the Light Absorber 44213.4.1.2 Semiconductors Act as the Reaction Sites 44513.4.1.3 Semiconductors Act as Both Light Absorber and the Reaction Site 44813.4.2 Type I, II, III Heterojunctions 44913.4.3 Z-Scheme Heterojunctions 45013.4.3.1 Z-Scheme with a Shuttle Redox Mediator 45113.4.3.2 Z-Scheme with a Solid Mediator 45313.4.3.3 Direct Z-Scheme 45313.5 Enhancement with Other Operation Parameters 45613.5.1 Backward/Side Reactions 45713.5.2 Improved Mass Transfer 45713.5.3 Corrosion Resistance 45813.5.4 Temperature 45913.5.5 Light Intensity 45913.5.6 Solution pH 46013.5.7 Design of Reactor 46013.6 Summary and Perspectives 462References 46414 Photocatalytic Oxygen Evolution 485Wenzhang Li and Keke Wang14.1 Introduction 48514.2 Basic of Photocatalytic Water Splitting 48614.2.1 History of Photocatalytic Water Splitting 48614.2.2 Fundamentals of Photocatalytic Water Splitting 48914.2.3 Half-Reactions Using Sacrificial Electron Donors and Acceptors 49114.3 Semiconductor Photocatalysts 49214.3.1 Brief History of Semiconductor Photocatalysts 49214.3.2 Advancements in Photocatalyst Materials 49314.3.2.1 Doping 49314.3.2.2 Heterostructures 49914.3.2.3 Morphology Control 50714.3.2.4 Cocatalyst Loading 51014.4 Conclusion Remarks and Future Directions 513References 51415 Photocatalytic Overall Water Splitting 521Ning Zhang15.1 Background 52115.2 Evaluation of Overall Water Splitting 52415.2.1 Stoichiometric Evolved Gaseous H2 and O2 52415.2.2 Calculation of Turnover Number 52515.2.3 Calculation of Quantum Yield 52615.3 Photocatalysts 52615.3.1 Single Semiconductor 52615.3.2 Z-Scheme System 53015.3.3 Heterojunctions 53215.3.4 Polymers 53515.4 Conclusions and Prospects 538References 53816 Photocatalytic CO2 Reduction 541Deli Jiang, Qi Song, Yuyan Xu, and Di Li16.1 Introduction 54116.2 Principle and Mechanism of CO2 Reduction 54216.2.1 Thermodynamics of CO2 Reduction 54216.2.2 Kinetics of CO2 Reduction 54316.2.3 CO2 Adsorption Configurations 54416.3 Strategies to Improve the Photocatalytic CO2 Reduction Activities 54416.3.1 Defect Engineering 54516.3.1.1 Anions Vacancies 54516.3.1.2 Cations Vacancies 54716.3.2 Loading of Metal Co-catalyst 55016.3.2.1 Loading of Pt Nanoparticles 55016.3.2.2 Loading of Pd Nanoparticles 55116.3.2.3 Loading of Ag Nanoparticles 55316.3.2.4 Loading of Alloys Nanoparticles 55516.3.3 Construction of Heterojunctions 55716.3.3.1 II-Typical Heterojunctions 55816.3.3.2 Z-Scheme Heterojunction 55916.4 Conclusions 562Acknowledgment 562References 562Index 569