Phosphorus(III)Ligands in Homogeneous Catalysis
Design and Synthesis
Inbunden, Engelska, 2012
Av Paul C. J. Kamer, Piet W. N. M. van Leeuwen, Paul C. J. (University of St. Andrews) Kamer, Piet W. N. M. (Universiteit van Amsterdam) van Leeuwen, Piet W. N. M. Van Leeuwen, Paul C J Kamer, Piet W N M van Leeuwen
2 559 kr
Beställningsvara. Skickas inom 11-20 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Over the last 60 years the increasing knowledge of transition metal chemistry has resulted in an enormous advance of homogeneous catalysis as an essential tool in both academic and industrial fields. Remarkably, phosphorus(III) donor ligands have played an important role in several of the acknowledged catalytic reactions. The positive effects of phosphine ligands in transition metal homogeneous catalysis have contributed largely to the evolution of the field into an indispensable tool in organic synthesis and the industrial production of chemicals. This book aims to address the design and synthesis of a comprehensive compilation of P(III) ligands for homogeneous catalysis. It not only focuses on the well-known traditional ligands that have been explored by catalysis researchers, but also includes promising ligand types that have traditionally been ignored mainly because of their challenging synthesis.Topics covered include ligand effects in homogeneous catalysis and rational catalyst design, P-stereogenic ligands, calixarenes, supramolecular approaches, solid phase synthesis, biological approaches, and solubility and separation.Ligand families covered in this book include phosphine, diphosphine, phosphite, diphosphite, phosphoramidite, phosphonite, phosphinite, phosphole, phosphinine, phosphinidenene, phosphaalkenes, phosphaalkynes, P-chiral ligands, and cage ligands.Each ligand class is accompanied by detailed and reliable synthetic procedures. Often the rate limiting step in the application of ligands in catalysis is the synthesis of the ligands themselves, which can often be very challenging and time consuming. This book will provide helpful advice as to the accessibility of ligands as well as their synthesis, thereby allowing researchers to make a more informed choice.Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis is an essential overview of this important class of catalysts for academic and industrial researchers working in catalyst development, organometallic and synthetic chemistry.
Produktinformation
- Utgivningsdatum2012-06-08
- Mått185 x 252 x 31 mm
- Vikt1 089 g
- FormatInbunden
- SpråkEngelska
- Antal sidor568
- FörlagJohn Wiley & Sons Inc
- ISBN9780470666272
Tillhör följande kategorier
Paul C.J. Kamer, EaStCHEM, School of Chemistry, University of St. Andrews, Scotland. Piet W.N.M. van Leeuwen, Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain.
- List of Contributors xv Preface xix1 Phosphorus Ligand Effects in Homogeneous Catalysis and Rational Catalyst Design 1Jason A. Gillespie, Erik Zuidema, Piet W. N. M. van Leeuwen, and Paul C. J. Kamer1.1 Introduction 11.2 Properties of phosphorus ligands 71.2.1 Electronic ligand parameters 71.2.2 Steric ligand parameters 91.2.3 Bite angle effects 101.2.3.1 Electronic bite angle effect 111.2.3.2 Steric bite angle effect 121.2.3.3 Steric versus electronic bite angle effects 121.2.4 Molecular electrostatic potential (MESP) approach 131.3 Asymmetric ligands 151.4 Rational ligand design in nickel-catalysed hydrocyanation 191.4.1 Introduction 191.4.2 Mechanistic insights 201.4.3 Rational design 201.5 Conclusions 22References 232 Chiral Phosphines and Diphosphines 27Wei Li and Xumu Zhang2.1 Introduction 272.1.1 Early developments 272.2 Chiral chelating diphosphines with a linking scaffold 302.2.1 Building chiral backbones from naturally available materials 302.2.1.1 Early development 302.2.1.2 Syntheses of DIOP variants 312.2.1.3 Synthesis from other natural chiral backbones 332.2.2 Design and synthesis of chiral backbones 352.2.2.1 Chiral backbones synthesized through asymmetric catalysis 352.2.2.2 Design and synthesis of ligands containing spiro backbones 372.2.2.3 Design and synthesis of chiral ferrocene backbones 402.2.2.4 Design and synthesis of other chiral backbones 412.2.3 Synthesis from optical resolution of phosphine precursors or intermediates 432.3 Chiral atropisomeric biaryl diphosphines 462.3.1 Synthesis of BINAP and its derivatives 462.3.2 Synthesis of atropisomeric biaryl ligands 492.3.3 General strategies of synthesizing of atropisomeric biaryl ligands 522.4 Chiral phosphacyclic diphosphines 522.4.1 Fundamental discovery and syntheses of BPE and DuPhos 522.4.2 Design and synthesis of bisphosphetanes 562.4.3 Design and synthesis of bisphospholanes 582.4.3.1 BPE and DuPhos analogue ligands 582.4.3.2 P-stereogenic bisphospholane ligands 602.4.4 Design and synthesis of bisphospholes 632.4.5 Design and synthesis of bisphosphinanes 652.4.6 Design and synthesis of bisphosphepines 662.4.7 Summary of synthetic strategies of phosphacycles 682.5 P-stereogenic diphosphine ligands 682.6 Experimental procedures for the syntheses of selected diphosphine ligands 692.6.1 Synthesis procedure for DIOP* ligand 692.6.2 Synthesis procedure of SDP ligands 702.6.3 Synthesis procedure of ( R , R )-BICP 712.6.4 Synthesis procedure of SEGPHOS 712.6.5 Synthesis procedure of Ph-BPE 722.6.6 Synthesis procedure of TangPhos 732.6.7 Synthesis procedure of Binaphane 742.7 Concluding remarks 75References 753 Design and Synthesis of Phosphite Ligands for Homogeneous Catalysis 81Aitor Gual, Cyril Goddard, Verónica de la Fuente, and Sergio Castillón3.1 Introduction 813.2 Synthesis of phosphites 823.2.1 Monophosphites 823.2.1.1 Symmetrically substituted monophosphites 823.2.1.2 Nonsymmetrically substituted monophosphites 833.2.1.3 Caged monophosphites 843.2.1.4 Monophosphites bearing dioxaphospho-cyclic units 843.2.2 Diphosphite ligands 943.2.2.1 Diphosphites not containing a dioxaphospho-cyclic unit 943.2.2.2 Diphosphites bearing dioxaphospho-cyclic units 953.2.3 Triphosphites 1053.3 Highlights of catalytic applications of phosphite ligands 1063.3.1 Hydrogenation reactions 1063.3.2 Functionalization of alkenes: hydroformylation and hydrocyanation 1083.3.2.1 Hydroformylation 1083.3.2.2 Hydrocyanation 1103.3.3 Addition of nucleophiles to carbonyl compounds and derivatives 1103.3.3.1 1,2-addition 1113.3.3.2 1,4-addition 1113.3.4 Allylic substitution reactions 1133.3.5 Miscellaneous reactions 1173.4 General synthetic procedures 1223.4.1 Symmetrically substituted phosphites 1223.4.2 Nonsymmetrically substituted phosphites 1233.4.3 Phosphites bearing dioxaphospho-cyclic units 123References 1244 Phosphoramidite Ligands 133Laurent Lefort and Johannes G. de Vries4.1 Introduction 1334.1.1 History 1344.2 Synthesis of phosphoramidites 1344.3 Reactivity of the phosphoramidites 1354.4 Types of phosphoramidite ligands 1364.4.1 Acyclic monodentate phosphoramidites 1364.4.2 Cyclic monodentate phosphoramidites based on diols 1364.4.2.1 Synthesis of binaphthol- and biphenol-based phosphoramidites 1374.4.2.2 Synthesis of TADDOL-based phosphoramidites 1404.4.2.3 Synthesis of spiro-based phosphoramidites 1414.4.2.4 Synthesis of 1,2-diol-based phosphoramidites 1414.4.2.5 Phosphoramidites based on unusual diols 1414.4.3 Cyclic phosphoramidites based on amino alcohols 1424.4.4 Bis-phosphoramidites 1434.4.4.1 Bis-phosphoramidites based on diamines 1434.4.4.2 Bis-phosphoramidites based on diols 1444.4.4.3 Other bidentate phosphoramidites 1454.4.5 Mixed bidentate ligands 1454.4.5.1 Phosphoramidite–phosphines 1454.4.5.2 Phosphoramidite–phosphite 1474.4.5.3 Phosphoramidite–amines 1484.4.5.4 Other bidentate phosphoramidite ligands 1494.4.6 Polydendate phosphoramidites 1494.5 Conclusion 1534.6 Synthetic procedures 153References 1535 Phosphinite and Phosphonite Ligands 159T. V. (Babu) RajanBabu5.1 Introduction 1595.2 General methods for synthesis of complexes 1605.3 Syntheses and applications of phosphinite ligands 1625.3.1 Early studies 1625.3.2 Phosphinite ligands from carbohydrates 1635.3.2.1 Rh-catalyzed asymmetric hydrogenation of dehydroaminoacids 1645.3.2.2 Ni(0)-catalyzed asymmetric hydrocyanation 1665.3.2.3 Ni(0)- and Pd(0)-catalyzed allylic substitution by carbon nucleophiles 1705.3.2.4 Rh(I)-catalyzed hydroformylation of vinylarenes 1715.3.2.5 Ni(II)-catalyzed asymmetric hydrovinylation of alkenes 1715.3.2.6 Ligands for homogeneous catalysis in water 1725.3.3 Phosphinite ligands from other alcohols 1725.3.4 Phosphine–phosphinite and amine–phosphinite ligands 1735.3.5 Phosphinites from amines, amino alcohols, and amino acids 1745.3.5.1 Aminophosphines 1745.3.5.2 Aminophosphine–phosphinite (AMPP) ligands 1765.3.6 Bisphosphinite ligands with other scaffoldings 1795.3.7 1,1'-Diaryl-2,2'-phosphinites and dynamic conformational controlin asymmetric catalysis 1805.3.8 Monophosphinite ligands 1825.3.9 Hybrid ligands containing phosphinites 1825.3.9.1 Thioether–phosphinite ligands 1825.3.9.2 Oxazoline–phosphinite and pyridine–phosphinite ligands 1845.3.9.3 An alkene–phosphinite ligand 1865.3.9.4 Chiral transition metal Lewis acids bearing electron-withdrawingphosphinites 1875.4 Synthesis and applications of phosphonite ligands 1885.4.1 Early studies 1885.4.2 Phosphonites from TADDOL and related compounds 1895.4.3 Phosphonites derived from 2,2'-hydroxybiaryls and related compounds 1935.4.4 Phosphine–phosphonite ligands 1965.4.5 Phosphonites with paracyclophane backbone 1965.4.6 Phosphonites with a spirobisindane backbone 1975.4.7 Miscellaneous phosphonite ligands 1985.4.8 Development of phosphonite ligands for industrially relevant processes 1995.4.8.1 Phosphonite ligands in hydroformylation 1995.4.8.2 Phosphonite ligands in Ni(0)-catalyzed hydrocyanation 2015.4.8.3 Oxazoline–phosphonite ligands and olefin dimerization 2035.4.9 Use of the phosphonite functionality to synthesize other ligands 2065.5 Experimental procedures for the syntheses of prototypical phosphinite andphosphonite ligands 2085.5.1 Phosphinite ligands 2085.5.1.1 Me 2 P(OMe) 2085.5.1.2 Et 2 POEt and EtP(OEt) 2 2095.5.1.3 Synthesis of methyl 3,4-bis- O -[bis(3,5-dimethylphenyl)phosphino]-2,6-di- O -benzoyl- a - D -glucopyranoside (Ligand 8) 2095.5.1.4 Preparation of phenyl 2,3-bis- O -[bis[3,5-bis(trifluoromethyl)phenyl]-phosphino)-4,6- O -benzylidene-glucopyranoside 2115.5.1.5 Preparation of bis-(pentafluorophenyl)chlorophosphine 2125.5.1.6 An alternate general procedure for phosphinite incorporation.[(2S,3R)-3-phenylthio-4-methylpent-2-oxy]diphenylphosphine 2125.5.1.7 Metal-template synthesis of an amino1,2-diarylphosphinediarylphophinite complex 213 55.5.1.8 Procedure for the preparation of a bis-aminodiaryphosphine (R)-37 2135.5.1.9 (-)-(S)-4- tert -butyl-2-{1-di(2'-methylphenyl)phosphinite-1-methyl-ethyl}-4,5-dihydro-oxazole 2145.5.1.10 (R)-7-(2-phenyl-6,7-dihydro-5H-[1]pyrindin)-di-(2'-methylphenyl)-phosphinite 2155.5.2 Phosphonite ligands 2175.5.2.1 (IR,7R)-9,9-dimethyl-2,2,4,6.6-penta(2-naphthyl)-3,5,8,l0-tetraoxa-4-phosphabicyclo[5.3.0]-decane 2175.5.2.2 (IR,7R)-9,9-dimethyl-2,2,4,6.6-penta(2-naphthyl)-3,5,8,l0-tetraoxa-4-phosphabicyclo/5.3.0]-decane 2185.5.2.3 Synthesis of (S)-2-[2-(diphenylphosphino)phenyl]-1,3,2-dinaphtho[d1,2,f1,2]dioxaphosphe-pine 2195.5.2.4 4,5-Bis{di[(2-tert-butyl)phenyl]phosphonito}-9,9-dimethylxanthene 2195.6 Acknowledgments 221Abbreviations 221References 2226 Mixed Donor Ligands 233René Tannert and Andreas Pfaltz6.1 Introduction: general design principles 2336.2 Synthesis of bidentate P,X-ligands 2356.2.1 P,N-ligands 2356.2.1.1 Oxazoline-based P,N-ligands 2356.2.1.2 Imidazoline-based P,N-ligands 2436.2.1.3 Oxazole-, thiazole-, and imidazole-basedP,N-ligands 2436.2.1.4 Pyridine-based P,N-ligands 2456.2.1.5 Amine- and imine-based P,N-ligands 2476.2.1.6 Other P,N-ligands 2506.2.2 P,O-ligands 2506.2.3 P,S-ligands 2526.2.4 P,C-ligands 2556.3 Conclusion 2576.4 Experimental procedures 2576.4.1 Synthesis of PHOX ligand 2576.4.2 Synthesis of NeoPHOX ligand 259References 2607 Phospholes 267Duncan Carmichael7.1 Introduction 2677.2 Creation of phospholes for use as ligands 2697.2.1 Reactions of phosphorus dihalides with metallated dienes 2697.2.2 Reactions of phosphorus dihalides with dienes 2707.2.3 Michael addition of primary phosphines to dienes 2717.3 Postsynthetic functionalisation 2717.3.1 Functionalisation at phosphorus 2717.3.2 Use of electrophiles 2727.3.3 Use of nucleophiles and aromatics 2727.3.4 Elaboration about the phosphole nucleus 2727.4 Phosphole coordination chemistry 2737.5 Phospholes in catalysis 2767.6 Experimental procedures 279References 2808 Phosphinine Ligands 287Christian Müller8.1 Introduction 2878.2 Ligand properties 2888.2.1 Electronic properties 2888.2.2 Structural characteristics and steric properties 2898.2.3 Reactivity of phosphinines 2908.3 Synthesis of Phosphinines 2928.3.1 O + /P exchange reaction 2928.3.2 Tin route 2948.3.3 [4 + 2] cycloaddition reactions 2948.3.4 Ring expansion methods 2958.3.5 Metal-mediated functionalizations 2968.4 Coordination chemistry 2978.5 Reactivity of transition metal complexes 3008.6 Application of phosphinines in homogeneous catalysis 3008.7 Experimental procedure for the synthesis of selected phosphinines 303References 3059 Highly Strained Organophosphorus Compounds 309J. Chris Slootweg9.1 Introduction 3099.2 Three-membered rings 3109.3 Rearrangements 3129.4 Homogeneous catalysis 3139.5 Conclusions 3149.6 Experimental procedures 3159.6.1 Synthesis of BABAR-Phos 49a (R = i-Pr) 3159.6.2 Synthesis of BABAR-Phos 49b (R = 3,5-(CF3)2C6H3) 316References 31710 Phosphaalkenes 321Julien Dugal-Tessier, Eamonn D. Conrad, Gregory R. Dake, and Derek P. Gates10.1 Introduction 32110.1.1 Frontier molecular orbitals of phosphaalkenes 32210.2 Synthesis of phosphaalkenes 32410.2.1 Diphosphinidenecyclobutene (DPCB) synthesis (P,P chelates) 32410.2.2 Bidentate-chelating P,P phosphaalkene ligands 32510.2.3 Phosphaalkenes capable of P,N-chelation to metals 32610.2.4 P,X achiral phosphaalkene ligands (X=P, O, S) 32610.2.5 Synthesis of enantiomerically pure P,X ligands (X=P, N) 32810.3 Catalysis with phosphaalkene ligands 32910.3.1 Ethylene polymerization 32910.3.2 Cross-coupling reactions 33010.3.3 Hydro- and dehydrosilylation 33210.3.4 Hydroamination and hydroamidation 33310.3.5 Isomerization reactions 33410.3.6 Allylic substitution 33510.3.7 Asymmetric catalysis 33610.4 Concluding remarks 33710.5 Experimental procedures for representative ligands 33810.5.1 Synthesis of DPCB 33810.5.2 Synthesis of PhAk–Ox 33810.6 Acknowledgments 339References 33911 Phosphaalkynes 343Christopher A. Russell and Nell S. Townsend11.1 Introduction 34311.2 General experimental 34411.3 Preparation of PC t Bu 34411.3.1 Tris(trimethylsilyl)phosphine, P(SiMe 3 ) 3 34511.3.2 tert -butylphosphaalkene, Me 3 SiP = C(OSiMe 3 ) t Bu (systematic name[2,2-dimethyl-1-(trimethylsiloxy)propylidene]–(trimethylsilyl) phosphine) 34611.3.3 (2,2-dimethylpropylidyne)phosphine; t BuC=P 34711.4 Adamanylphosphaalkyne, AdC=P 34811.4.1 Adamant-1-yl(trimethylsiloxy)methylidene (trimethylsilyl) phosphane 34811.4.2 (Adamant-1-ylmethylidyne)phosphane 34811.5 Mesitylphosphaalkyne, MesC=P 34911.5.1 Preparation of potassium bis(trimethylsilyl)phosphide {KP(SiMe 3 ) 2 } 34911.5.2 Mesityl(trimethylsiloxy)methylene trimethylsilylphosphane 34911.5.3 Mesitylphosphaalkyne 35011.6 Phospholide anions 35011.6.1 Preparation of Cp 2 Zr(PC t Bu) 2 35111.6.2 Preparation of ClP(PC t Bu) 2 35111.6.3 Preparation of the triphospholide anion and derivation to give thetriphenylstannylphosphole 35211.6.4 Preparation of Cl 3 P 3 (C t Bu) 2 35211.6.5 Preparation of the triphospholide anion 35211.7 1,3,5-Triphosphabenzene 35211.7.1 Preparation of Cl 3 VN t Bu 35311.7.2 Preparation of 1,3,5-triphospabenzene; P 3 (C t Bu) 3 353References 35312 P-chiral Ligands 355Jérôme Bayardon and Sylvain Jugé12.1 Introduction 35512.2 Designing P-chiral ligands using alcohols as chiral auxiliaries 35712.3 Designing P-chiral ligands using amino alcohols as chiral auxiliaries 36312.3.1 Synthesis starting from tricoordinated 1,3,2-oxazaphospholidines 36312.3.2 Synthesis starting from tetracoordinated 1,3,2-oxazaphospholidines 36412.3.3 Synthesis starting from 1,3,2-oxazaphospholidine borane complexes 36612.3.3.1 Interest of the borane–phosphorus complex chemistry 36612.3.3.2 Ephedrine method 36612.3.3.3 Methyl phosphinite boranes as P-chiral electrophilic building blocks 36712.3.3.4 Chlorophosphine boranes as P-chiral electrophilic building blocks 36812.3.3.5 Designing P-chiral aminophosphine phosphinites (AMPP*) 37112.3.3.6 P-chiral o -hydroxyaryl phosphines 37112.3.3.7 P-chiral secondary phosphine boranes 37312.3.3.8 P-chiral 1,2-diphosphinobenzenes 37312.3.3.9 Strategies for the enantiodivergent synthesis of P-chiral ligands 37512.4 Designing of P-chiral ligands using amines as chiral auxiliaries 37712.4.1 Sparteine as chiral auxiliary 37712.4.2 a -Arylethylamines as chiral auxiliaries 38112.5 Conclusion 38112.6 Experimental procedures 383References 38513 Phosphatrioxa-Adamantane Ligands 391Paul G. Pringle and Martin B. Smith13.1 Introduction 39113.2 Synthesis of phosphatrioxa-adamantanes 39313.3 Catalysis supported by phosphatrioxa-adamantane ligands 39513.3.1 Alkoxycarbonylation 39513.3.2 Hydroformylation and hydrocyanation 39713.3.3 Pd-catalysed coupling reactions 39913.3.4 Asymmetric hydrogenation 40013.4 Experimental procedures for phosphatrioxa-adamantanes ligands 40113.4.1 Preparation of CgPH 40113.4.2 Preparation of CgPH(BH 3 ) 40213.4.3 Preparation of CgPBr 40213.4.4 Preparation of CgPCH 2 CH 2 CH 2 PCg (L1) 40213.4.5 Preparation of CgPPh (L7) 402References 40214 Calixarene-based Phosphorus Ligands 405Angelica Marson, Piet W. N. M. van Leeuwen, and Paul C. J. Kamer14.1 Introduction 40514.2 Conformational properties 40714.3 Calixarene-based phosphorus ligands 40914.3.1 Phosphines and phosphinites 40914.3.2 Phosphites and phosphonites 41414.4 Applications in homogeneous catalysis 42214.5 Experimental procedures 424References 42515 Supramolecular Bidentate Phosphorus Ligands 427Jarl Ivar van der Vlugt and Joost N. H. Reek15.1 Introduction: general design principles 42715.2 Construction of bidentate phosphorus ligands via self-assembly 42915.2.1 H bonding 42915.2.2 Metal template assembly 44015.2.3 Ion templation 44515.3 Conclusions 44615.4 Experimental procedures 44715.4.1 General remarks 44715.4.2 Synthesis of UREAPhos 44715.4.3 Synthesis of METAMORPhos 44815.4.4 Synthesis of supraphos 450References 45916 Solid-phase Synthesis of Ligands 463Michiel C. Samuels, Bert H. G. Swennenhuis, and Paul C. J. Kamer16.1 Introduction 46316.2 Insoluble supports in ligand synthesis 46616.3 Soluble polymeric supports 47016.4 Supported ligands in catalysis 47216.5 Solid-phase synthesis of nonsupported ligands 47316.6 Conclusions and outlook 47516.7 Experimental procedures 476References 47817 Biological Approaches 481René den Heeten, Paul C. J. Kamer, and Wouter Laan17.1 Introduction 48117.2 Peptide-based phosphine ligands 48117.2.1 Solid-phase synthesis using phosphine-containing amino acids 48117.2.1.1 Synthesis of phosphine-containing amino acids 48217.2.1.2 Synthesis and application of phosphine-containing peptides 48417.2.2 Functionalisation of peptides with phosphines 48517.2.2.1 Phosphinomethylation of amines 48517.2.2.2 Phosphine modification of peptides via imine or amide formation 48517.3 Oligonucleotide-based phosphine ligands 48717.3.1 Covalent anchoring of phosphines to DNA 48717.4 Phosphine-based artificial metalloenzymes 48817.4.1 Supramolecular anchoring of phosphines to proteins 48917.4.1.1 Avidin–biotin 48917.4.1.2 Antibodies 49017.4.2 Covalent anchoring of phosphines 49117.5 Conclusions and outlook 49217.6 Representative synthetic procedures 49317.6.1 Artificial hydrogenases based on the biotin–streptavidin technology 49317.6.2 Site-selective covalent modification of proteins with phosphinesvia hydrazone linkage 49417.7 Acknowledgments 495References 49518 The Design of Ligand Systems for Immobilisation in Novel Reaction Media 497Paul B. Webb and David J. Cole Hamilton18.1 Introduction 49718.2 Aqueous biphasic catalysis 49918.3 Fluorous biphasic catalysis 50318.4 Ionic liquids as reaction media 50718.5 Supercritical fluids as solvents in single- and multiphasic reaction systems 51218.5.1 Biphasic systems based on CO2 51618.6 Experimental section 51818.6.1 Trisodium salt of 3,3′,3″-phosphinetriylbenzenesulfonic acid (TPPTS) 51818.6.2 2,7-bis(SO3Na)-Xantphos 51918.6.3 Sulfonated BINAP 51918.6.4 Synthesis of Tris(1H,1H,2H,2H-perfluorooctyl)phosphine 52018.6.5 Synthesis of Tris (4-tridecafluorohexylphenyl)phosphine 52018.6.6 (Meta-sulfonatophenyl)diphenylphosphine, sodium salt (monosulfonatedtriphenylphosphine, TPPMS) 52218.6.7 1-Propyl-3-methylimidazolium diphenyl(3-sulfonatophenyl)-phosphine([PrMIM][TPPMS]) 52318.6.8 4,4′-Phosphorylated 2,2′-Bis(diphenylphosphanyl)-1,1′-binaphthyl 52318.6.9 Synthesis of (R)-6,6′-bis(perfluorohexyl)-2,2′bis (diphenylphosphino)-1,1′-binaphthyl ((R)-Rf-BINAP) 524References 526Index