Petroleum Refining
Technology, Economics, and Markets, Sixth Edition
Inbunden, Engelska, 2019
Av Mark J. Kaiser, Arno de Klerk, James H. Gary, Glenn E. Handwerk, USA) Kaiser, Mark J. (Louisiana State University, Baton Rouge, USA) Gary, James H. (Colorado School of Mines, Golden, USA) Handwerk, Glenn E. (Consulting Chemical Engineer, Golden, Colorado, Mark J Kaiser, Arno De Klerk, James H Gary, Glenn E Handwerk
1 649 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.For four decades, Petroleum Refining has guided thousands of readers toward a reliable understanding of the field, and through the years has become the standard text in many schools and universities around the world offering petroleum refining classes, for self-study, training, and as a reference for industry professionals. The sixth edition of this perennial bestseller continues in the tradition set by Jim Gary as the most modern and authoritative guide in the field. Updated and expanded to reflect new technologies, methods, and topics, the book includes new discussion on the business and economics of refining, cost estimation and complexity, crude origins and properties, fuel specifications, and updates on technology, process units, and catalysts.The first half of the book is written for a general audience to introduce the primary economic and market characteristics of the industry and to describe the inputs and outputs of refining. Most of this material is new to this edition and can be read independently or in parallel with the rest of the text. In the second half of the book, a technical review of the main process units of a refinery is provided, beginning with distillation and covering each of the primary conversion and treatment processes. Much of this material was reorganized, updated, and rewritten with greater emphasis on reaction chemistry and the role of catalysis in applications. Petroleum Refining: Technology, Economics, and Markets is a book written for users, the practitioners of refining, and all those who want to learn more about the field.
Produktinformation
- Utgivningsdatum2019-09-16
- Mått178 x 254 x 34 mm
- Vikt1 634 g
- FormatInbunden
- SpråkEngelska
- Antal sidor722
- Upplaga6
- FörlagTaylor & Francis Inc
- ISBN9781466563001
Tillhör följande kategorier
Mark J. Kaiser, Arno de Klerk, James H. Gary, Glenn E. Handwerk
- Part 1. Markets and Economics Section 1: Industry Structure and Characteristics1. Performance1.1 Refinery Supply Chains1.1.1 Input-Output Model1.1.2 Infrastructure1.1.3 Location1.1.4 Commercial Requirements1.2 Performance1.3 Refinery Economics1.4 Refining Yields1.5 Refining Margins1.5.1 Gross Margin1.5.2 Net Margin and Netback1.5.3 Application1.6 Margin Comparisons1.6.1 Sweet vs. Sour Crude1.6.2 Cracker vs. Coker Refinery1.7 Factors That Impact Margins1.8 Crack Spreads1.9 Market DataReferences2. Products2.1 Overview2.2 Petroleum Gases2.2.1 Methane2.2.2 Ethane2.2.3 Propane2.2.4 Butane2.2.5 Natural Gas Liquids2.3 Light Distillates2.3.1 Naphthas2.3.2 Gasolines2.4 Middle Distillates2.4.1 Jet Fuel2.4.2 Kerosene2.4.3 Automotive Diesel2.4.4 Marine Diesel2.4.5 Light Fuel Oil2.5 Heavy Fuel Oils2.6 Specialty Products2.6.1 Base Oils and Lubricants2.6.2 Engine Oils2.6.3 Greases2.6.4 Waxes2.6.5 Bitumen2.6.6 Petroleum Coke2.6.7 Carbon BlackReferences3. Processes3.1 Overview3.2 Separation3.2.1 Perfect Batch Distillation3.2.2 Distillation Curves3.2.3 Fractions3.2.4 Atmospheric Distillation3.2.5 Vacuum Distillation3.3 Conversion3.3.1 Thermal Cracking3.3.2 Catalytic Cracking3.3.3 Hydrocracking3.3.4 Coking3.4 Finishing3.4.1 Hydrotreating3.4.2 Catalytic Reforming3.4.3 Alkylation3.4.4 IsomerizationReferences4. Prices4.1 Introduction4.2 Price Formation4.3 Global Oil and Product Markets4.4 Price Characteristics4.4.1 Prices are Volatile4.4.2 Prices are Unpredictable4.4.3 Business Cycle Impacts are Periodic4.4.4 Price Shocks4.4.5 Market Factors Dominate Price Signals4.4.6 Private Factors are Secondary in Price Formation4.5 Supply and Demand4.5.1 Supply Curves4.5.2 Demand Curves4.5.3 Equilibrium4.6 Market Factors4.6.1 Demand4.6.2 Supply4.6.3 Production Cost4.6.4 OPEC4.6.5 Spare Production Capacity4.6.6 Supply Disruptions4.6.7 Technology Impacts4.7 Private Factors4.7.1 Quality4.7.2 Yield4.8 World Production circa 20174.9 Refined Product PricesReferences5. Potpourri5.1 Business Model5.1.1 Required Spending5.1.2 Discretionary Spending5.1.3 Capital Investments5.2 Company Classification5.2.1 Firm Type5.2.2 Ownership5.2.3 Level of Integration5.2.4 Business Objectives5.3. U.S. and World Capacity Trends5.3.1 Distillation5.3.2 Coking5.3.3 Catalytic Cracking5.3.4 Hydrocracking5.3.5 Hydrotreating5.3.6 Reforming, Alkylation, Isomerization5.3.7 Aromatics and Lubricants5.3.8 Hydrogen5.3.9 Sulfur5.3.10 Asphalt5.4. U.S. Capacity Correlations5.5 Market Valuation5.6 Capital InvestmentReferencesSection 2: Cost Estimation and Complexity6. Cost Estimation6.1 Construction Cost Factors6.1.1 ISBL6.1.2 USGC Reference6.1.3 Project Type6.1.4 Unit Addition vs. Grassroots Refinery6.1.5 Process Technology6.1.6 Process Severity6.1.7 Unit Requirements6.1.8 Contract Type6.1.9 Actual vs. Estimated Cost6.1.10 Time6.1.11 Location6.2 Unit Cost6.2.1 Source Data6.2.2 Sample Size6.2.3 Normalization6.3 Cost Functions6.3.1 Specification6.3.2 Dependent Variable6.3.3 Parameter Estimation6.3.4 Data Processing6.3.5 Data Exclusion6.3.6 Cost Envelopes6.4 USGC Grassroots Construction Cost6.5 Operating Cost Factors6.5.1 Common vs. Unique Factors6.5.2 Utility Prices6.5.3 Capacity, Complexity, Age6.5.4 Time6.5.5 Location6.5.6 Exceptional Events6.6 Operating Expenses6.6.1 Data Sources6.6.2 Consolidation Levels6.7 U.S. Operating Cost Statistics, 2010-2014References7. Refinery Complexity7.1 Ideal Refinery7.2 Nelson Complexity Index7.2.1 Motivation7.2.2 Complexity Factor7.2.3 Refinery Complexity7.3 Complexity Factors7.3.1 Definition7.3.2 Measurement7.3.3 Complexity Cross Factor7.3.4 Uncertainty7.3.5 Traditional Approach7.4 Refinery Complexity7.5 U.S. and World Statistics circa 20187.5.1 Regional Capacity7.5.2 U.S. Refining Complexity7.5.3 Largest World Refineries7.5.4 Conversion Capacity7.5.5 FCC-Equivalent Capacity7.6 Complexity Equation7.7 Cost Estimation7.8 Complexity Factor at Reference Capacity7.8.1 Specification7.8.2 U.S. CFRC StatisticsReferences8. Classification8.1 Refinery Categories8.2 Very Simple Refinery8.3 Simple Refinery8.4 Complex Refinery8.5 Krotz Springs, Louisiana8.6 St. Paul Park, Minnesota9. Complexity Applications9.1 Introduction9.2 Complexity Functional9.2.1 Reference Capacity Approach Extension9.2.2 Factor Functional Average9.2.3 Evaluation9.2.4 Closed-Form Expressions9.2.5 Comparison9.2.6 U.S. Refinery Complexity9.3 Complexity Moments9.4 Spatial Complexity9.5 Replacement Cost9.6 Sales Price Models9.6.1 Asset Transactions9.6.2 Formulation9.6.3 Constraints9.7 Complexity Barrels9.8 Inverse Problem9.8.1 Three Refinery Example9.8.2 Matrix FormulationReferences10. Modern Refineries10.1 Hydrocracker10.2 Lubes10.3 Integrated/PetrochemicalSection 3: Crude Oil and Properties11. Origin and Composition11.1 Geologic Time11.2 Generation, Migration and Accumulation11.2.1 Source Rock11.2.2 Generation11.2.3 Migration11.2.4 Accumulation11.2.5 Sedimentary Basins11.3 The Hydrocarbon Source11.3.1 Origin11.3.2 Kerogen Type11.3.3 Oil Window11.3.4 Transformation Sequence11.4 Molecular Composition11.4.1 Naming Organic Chemicals11.4.2 Early Classifications11.4.3 Hydrocarbons11.4.4 Paraffin (Alkane) Series11.4.5 Naphthene (Cycloparaffin) Series11.4.6 Aromatic (Benzene) Series11.5 Crude Oil Classification11.5.1 Component Groups11.5.2 Ternary Diagram11.5.3 Tissot-Welte Classification11.5.4 Crude Oil Classes11.5.6 Marine vs. Nonmarine Organic Matter11.5.7 High Sulfur vs. Low Sulfur Oils11.6 Alteration and Thermal Maturity Pathways11.6.1 Thermal Alteration11.6.2 Deasphalting11.6.3 Biodegradation11.6.4 Water WashingReference12. Crude Quality12.1 Indicators12.1.1 Color12.1.2 Density12.1.3 Heteroatoms12.1.4 Chemical Structure12.1.5 Viscosity12.2 Classification12.3 Blends of Crude Oils12.3.1 Additive Properties12.3.2 Nonadditive PropertiesReferences13. Distillation Profile13.1 Distillation Curves13.2 Laboratory Methods13.2.1 Standards13.2.2 ASTM D8613.2.3 ASTM D116013.2.4 ASTM D289213.2.5 ASTM D288713.2.6 ASTM D6352, D716913.3 Hempel Method13.3.1 Procedure13.3.2 40 mmHg Pressure Correction13.3.3 Temperatures Beyond 790°F13.3.4 Gravity Midpercent13.3.5 Heavy Hydrocarbons13.4 Distillation Profile Summary13.5 Hasting Field, Texas13.6 North Slope Crude, AlaskaReferences14. Crude Properties14.1 Bayon Choctaw and West Hackberry Blends14.2 Crude Oil Assay14.3 Chemical Properties14.3.1 Elemental Analysis14.2.2 PNA Composition14.3.3 Carbon Residue14.4 Composition14.4.1 Carbon Hydrogen Ratio14.4.2 Sulfur14.4.3 Nitrogen14.4.4 Metals14.4.5 Asphaltenes14.4.6 Resins14.4.7 Waxes14.4.8 Salt Content14.4.9 Acid Number14.5 Physical Properties14.5.1 Molecular Weight14.5.2 API Gravity14.5.3 UOP Characterization Factor14.5.4 Viscosity14.5.5 Pour Point14.5.6 Reid Vapor PressureReferences15. Fraction Characterization15.1 Correlation Relations15.2 Carbon Hydrogen Weight Ratio15.3 Carbon Residue15.4 Asphaltene Content15.5 Molecular Weight15.6 Aniline Point15.7 Smoke Point15.8 Viscosity15.9 Refractive Index15.10 Cloud Point15.11 Pour Point15.12 Freezing Point15.13 Cetane Index15.14 Molecular Type CompositionReferencesSection 4: Fuel Specifications16. Standards, Specifications and Fuel Quality16.1 Types of Specifications16.2 Consensus Specifications Definitions16.3 Test Methods16.4 Transportation Fuel Specifications16.4.1 Gasoline – ASTM D481416.4.2 Jet Fuel – ASTM D165316.4.3 Diesel – ASTM D97516.4.4 European Automotive Fuels16.5 Mandatory and Suggested Specifications16.6 Enforcement16.7 Fuel Quality16.8 Properties Not in SpecificationsReferences17. Gasoline17.1 Introduction17.2 Octane Number17.3 Volatility17.3.1 Vapor Pressure17.3.2 Distillation Profile17.3.3 Vapor-Liquid Ratio17.3.4 Vapor Lock Index17.3.5 Drivability Index17.3.6 Volatility Specifications and Schedules17.4 Composition17.5 Corrosion17.6 Storage and Stability17.7 Energy Content17.7.1 Heating Value17.7.2 Power17.7.3 Fuel Economy17.8 Additives and Blending Components17.9 Fuel Ethanol for Blending17.9.1 Purity17.9.2 Water, Methanol, Chloride Content17.9.3 Acidity17.9.4 Sulfur Content17.9.5 Denaturants17.9.6 Workmanship17.10 Aviation GasolineReferences18. Jet Fuels18.1 Introduction18.2 Specifications18.3 Fluidity18.4 Volatility18.5 Stability18.6 Heat Content18.7 Combustion Characteristics18.8 Composition18.9 Lubricity18.10 Corrosion18.11 Contaminants18.12 AdditivesReferences19. Diesel Fuel19.1 Introduction19.2 Specification19.3 Cetane Number19.4 Distillation19.5 Flash Point19.6 Lubricity19.7 Ash Content19.8 Carbon Residue19.9 Low Temperature Operability19.10 Stability19.11 Blendstocks19.12 Biodiesel19.13 Other Middle Distillate ProductsReferences20. Product Blending20.1 Introduction20.2 Gasoline Blendstocks20.3 Reid Vapor Pressure20.3.1 Theoretical Method20.3.2 Blending Indices20.4 Octane Blending20.5 Blending for Other Properties20.6 Gasoline Blending Case Study20.7 Ethanol Blending20.8 Diesel and Jet Fuel BlendstocksReferencesPart 2 – TechnologySection 5: Separation Processes21. Crude Oil Desalting21.1 Introduction21.2 Desalting Technology21.2.1 General Description21.2.2 Tight Emulsions and Metal Containing Organic CompoundsReferences22. Crude Oil Distillation2.1 Introduction22.2 Atmospheric Distillation22.2.1 General Description22.2.2 Front-End Design Configurations22.2.3 Light Naphtha Stabilizer Column22.3 Vacuum DistillationReferences23. Solvent Deasphalting23.1 Introduction23.2 Solvent Deasphalting Technology23.2.1 General Description23.2.2 Bitumen Froth Treatment23.3 Deasphalting23.3.1 Oil Solubility23.3.2 AsphaltenesReferencesSection 6: Residue Conversion Processes24. Visbreaking24.1 Introduction24.2 Visbreaking Technology24.2.1 Feed Material24.2.2 General Description24.2.3 Hydrovisbreaking and Hydrogen Donor Visbreaking24.3 Thermal Cracking24.3.1 Reaction Chemistry24.3.2 Conversion24.3.3 Equivalent Residence Time24.4 Visbreaker Operation24.4.1 Operating Parameters24.4.2 Fuel Properties24.4.3 Feed PretreatmentReferences25. Coking25.1 Introduction25.2 Coking Technology25.2.1 Feed Material25.2.2 Delayed Coking 25.2.3 Fluid Coking 25.3 Thermal Carbonization25.3.1 Reaction Chemistry and Phase Separation25.3.2 Role of Solids25.4 Delayed Coker Operation25.4.1 Operating Parameters25.4.2 Coke Properties25.4.3 Fuel Properties25.4.4 Yield Estimation25.5 Fluid Coker Operation25.5.1 Operating Parameters25.5.2 Fuel Properties25.5.3 Yield EstimatesReferences26. Residue Hydroconversion26.1 Introduction26.2 Residue Hydroconversion Technology26.2.1 Feed Material26.2.2 Reactor Types26.2.3 Fixed Bed Residue Hydroconversion 26.2.4 Moving Bed Residue Hydroconversion 26.2.5 Ebullated Bed Residue Hydroconversion 26.5.6 Slurry Bed Residue Hydroconversion 26.3 Thermal Conversion Combined with Catalytic Hydrotreating26.3.1 Reaction Chemistry26.3.2 Sediment Formation26.3.3 Residue Hydroconversion Catalysts26.4 Residue Hydroconversion Operation26.4.1 Operating Parameters26.4.2 Product YieldsReferences27. Fluid Catalytic Cracking27.1 Introduction27.2 Fluid Catalytic Cracking Technology27.2.1 Feed Material27.2.2 General Description27.2.3 Residue Fluid Catalytic Cracking27.2.4 FCC for Petrochemicals Production27.3 Catalytic Cracking27.3.1 Reaction Chemistry27.3.2 Conversion27.3.3 FCC Catalysts27.3.4 Catalyst Deactivation and Equilibrium Catalyst27.3.5 Catalyst Additives27.4 Fluid Catalytic Cracking Operation27.4.1 Operating Parameters27.4.2 Pressure Balance27.4.3 Heat Balance27.4.4 Fuel Properties27.4.5 Feed Pretreating27.4.6 Yield EstimationReferences28. Hydrocracking28.1 Introduction28.2 Hydrocracking Technology28.2.1 Feed Material28.2.2 General Description28.2.3 Hydroisomerization to Produce Lubricant Base Oil28.2.4 Hydrodewaxing28.4.5 Mild Hydrocracking28.3 Catalytic Hydrocracking28.3.1 Reaction Chemistry28.3.2 Conversion28.3.3 Hydrocracking Catalysts28.3.4 Competitive Adsorption28.4 Hydrocracker Operation28.4.1 Operating Parameters28.4.2 Fuel Properties28.4.3 Yield EstimatesReferencesSection 7: Distillate, Naphtha, and Gas Conversion Processes29. Hydrotreating29.1 Introduction29.2 Hydrotreating Technology29.2.1 Feed Material29.2.2 General Description29.3 Catalytic Hydrotreating29.3.1 Reaction Chemistry29.3.2 Reaction Thermodynamics29.3.3 Conversion29.3.4 Hydrotreating Catalysts29.4 Hydrotreater OperationReferences30. Butane and Naphtha Hydroisomerization30.1 Introduction30.2 C4-C6 Hydroisomerization Technology30.2.1 Feed Material30.2.2 General Description30.2.3 Process Configurations with Recycle30.3 Catalytic Hydroisomerization30.3.1 Reaction Chemistry30.3.2 Reaction Thermodynamics30.3.3 Hydroisomerization Catalysts30.4 C4-C6 Hydroisomerization Operation30.4.1 Operating Parameters30.4.2 Fuel PropertiesReferences31. Catalytic Naphtha Reforming31.1 Introduction31.2 Naphtha Reforming Technology31.2.1 Feed Material31.2.2 General Description31.2.3 Catalyst Regeneration Configurations31.2.4 Catalyst Regeneration31.2.5 Aromatization for Petrochemical Production31.3 Catalytic Naphtha Reforming31.3.1 Reaction Chemistry31.3.2 Conventional Reforming Catalysts31.4 Catalytic Naphtha Reforming Operation31.4.1 Operating Conditions31.4.2 Fuel Properties31.4.3 Yield EstimationReferences32. Aliphatic Alkylation32.1 Introduction32.2 Aliphatic Alkylation Technology32.2.1 Feed Material32.2.2 HF Catalyzed Aliphatic Alkylation32.2.3 H2SO4 Catalyzed Aliphatic Alkylation32.2.4 Comparison of HF and H2SO4 Catalyzed Processes32.3 Reaction Chemistry32.3.1 Liquid Acid Catalysts32.3.2 Solid Acid Catalysts32.4 Aliphatic Alkylation Operation32.4.1 Operating Parameters32.4.2 Fuel PropertiesReferences33. Olefin Oligomerization33.1 Introduction33.2 Olefin Oligomerization Technology33.2.1 Feed Material33.2.2 Fixed Bed Olefin Oligomerization33.2.3 Liquid Phase Olefin Oligomerization33.2.4 Catalyst Selection33.2.5 Refinery Benzene Reduction33.3 Reaction Chemistry33.3.1 Acid Catalysts33.3.2 Organometallic Catalysts33.4 Oligomerization Operation33.4.1 Operating Parameters33.4.2 Fuel PropertiesReferences34. Etherification34.1 Introduction34.2 Etherification Technology34.2.1 Feed Material34.2.2 General Description34.3 Etherification34.3.1 Reaction Chemistry34.3.2 Reaction Thermodynamics34.3.3 Etherification Catalysts34.4 Etherification Operation34.4.1 Operating Parameters34.4.2 Volumetric Yield34.4.3 Fuel Properties of Alcohols and EthersReferencesSection 8: Lubricants and Supporting Technologies35. Lubricant Base Oils35.1 Introduction35.2 Lubricant Base Oil Production Technology35.2.1 Feed Material35.2.2 Technology Selection35.2.3 Propane Deasphalting35.2.4 Solvent Extraction35.2.5 Solvent Dewaxing35.2.6 Clay TreatingReferences36. Supporting Technologies36.1 Hydrogen Production and Purification36.2 Light Hydrocarbon Gas Processing36.3 Acid Gas Removal36.4 Sulfur Recovery From Acid Gas36.4.1 Claus Process36.4.2 Claus Tail Gas TreatmentReferencesAppendix A. DefinitionsAppendix B. Chapter DiscussionAppendix C. Chapter Problems