Del 1753 - Lecture Notes in Mathematics
Painleve Equations in the Differential Geometry of Surfaces
Häftad, Engelska, 2000
Av Alexander I. Bobenko TU Berlin, Ulrich Eitner, Alexander I. Bobenko Tu Berlin, Alexander I. Bobenko
499 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Since the time of surfaces -+ in differential Gauss, parametrized (x, y) P(x, y) have been described a frame attached to the moving geometry through TI(x, y) surface. One introduces the Gauss- which linear dif- Weingarten equations are , ferential equations = U = TIX T1, VT', !PY (1. for the and their condition frame, compatibility - = V + [U, V] 0, UY (1.2) which the Gauss-Codazzi For surfaces in three-dim- represents equations . a sional Euclidean the frame T1 lies in the usually or space, group SO(3) SU(2). On the other a of a non-linear in the form hand, representation equation (1.2) is the of the of of starting point theory integrable equations (theory solitons), which in mathematical in the 1960's appeared physics [NMPZ, AbS, CD, FT, More the differential for the coefficients of AbC]. exactly, partial equation (1.2) the matrices U and V is considered to be if these matrices can be integrable , extended to U V non-trivially a one-parameter family (x, y, A), (x, y, A) satisfying - = + U(A)y V(A). [U(A), V(A)] 0, (1-3) so that the differential is and original partial equation preserved.' .Usually U(A) V are rational functions of the which is called the (A) parameter A, spectral param- In soliton the eter is called the Lax . theory, representation (1.3) representation the Zakharov-Shabat or representation [ZS].
Produktinformation
- Utgivningsdatum2000-12-12
- Mått155 x 235 x 8 mm
- Vikt201 g
- FormatHäftad
- SpråkEngelska
- SerieLecture Notes in Mathematics
- Antal sidor120
- Upplaga2000
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- ISBN9783540414148