Optimization Algorithms for Distributed Machine Learning
Häftad, Engelska, 2023
Av Gauri Joshi
639 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Produktinformation
- Utgivningsdatum2023-11-26
- Mått168 x 240 x 9 mm
- Vikt255 g
- FormatHäftad
- SpråkEngelska
- SerieSynthesis Lectures on Learning, Networks, and Algorithms
- Antal sidor127
- Upplaga23001
- FörlagSpringer International Publishing AG
- ISBN9783031190698