bokomslag Optical Nonlinearities in Nanostructured Systems
Vetenskap & teknik

Optical Nonlinearities in Nanostructured Systems

Carlos Torres-Torres Geselle Garca-Beltrn

Pocket

1009:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-11 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 169 sidor
  • 2023
This book provides readers with a detailed overview of second- and third-order nonlinearities in various nanostructures, as well as their potential applications. Interest in the field of nonlinear optics has grown exponentially in recent years and, as a result, there is increasing research on novel nonlinear phenomena and the development of nonlinear photonic devices. Thus, such a book serves as a comprehensive guide for researchers in the field and those seeking to become familiar with it. This text focuses on the nonlinear properties of nanostructured systems that arise as a result of optical wave mixing. The authors present a review of nonlinear optical processes on the nanoscale and provide theoretical descriptions for second and third-order optical nonlinearities in nanostructures such as carbon allotropes, metallic nanostructures, semiconductors, nanocrystals, and complex geometries. Here, the characterization and potential applications of these nanomaterials are alsodiscussed. The factors that determine the nonlinear susceptibility in these systems are identified as well as the influence of physical mechanisms emerging from resonance and off-resonance excitations. In addition, the authors detail the effects driven by important phenomena such as quantum confinement, localized surface plasmon resonance, Fano resonances, bound states, and the Purcell effect on specific nanostructured systems. Readers are provided with a groundwork for future research as well as new perspectives in this growing field.
  • Författare: Carlos Torres-Torres, Geselle Garca-Beltrn
  • Format: Pocket/Paperback
  • ISBN: 9783031108266
  • Språk: Engelska
  • Antal sidor: 169
  • Utgivningsdatum: 2023-09-04
  • Förlag: Springer International Publishing AG