Non-local Structural Mechanics
Inbunden, Engelska, 2015
Av Danilo Karlicic, Tony Murmu, Sondipon Adhikari, Michael McCarthy, Serbia) Karlicic, Danilo (University of Nis, UK) Murmu, Tony (University of the West of Scotland, UK) Adhikari, Sondipon (University of Glasgow, Ireland) McCarthy, Michael (University of Limerick, Michael Mccarthy
2 339 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Serving as a review on non-local mechanics, this book provides an introduction to non-local elasticity theory for static, dynamic and stability analysis in a wide range of nanostructures. The authors draw on their own research experience to present fundamental and complex theories that are relevant across a wide range of nanomechanical systems, from the fundamentals of non-local mechanics to the latest research applications.
Produktinformation
- Utgivningsdatum2015-12-15
- Mått163 x 241 x 25 mm
- Vikt694 g
- FormatInbunden
- SpråkEngelska
- Antal sidor374
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848215221
Tillhör följande kategorier
Danilo Karlicic is a Lecturer at the Mechanical Engineering Faculty at the University of Niš, Serbia. Tony Murmu is a Lecturer of Mechanical Engineering at the University of the West of Scotland, United Kingdom. Sondipon Adhikari is the Chair of Aerospace Engineering at the College of Engineering at Swansea University, United Kingdom. Michael McCarthy is Professor of Aeronautical Engineering at the University of Limerick, Ireland.
- Preface xiChapter 1. Introduction to Non-Local Elasticity 11.1. Why the non-local elasticity method for nanostructures? 11.2. General modeling of nanostructures 31.3. Overview of popular nanostructures 41.4. Popular approaches for understanding nanostructures 81.5. Experimental methods 91.6. Molecular dynamics simulations 91.7. Continuum mechanics approach 91.8. Failure of classical continuum mechanics 101.9. Size effects in properties of small-scale structures 111.10. Evolution of size-dependent continuum theories 121.11. Concept of non-local elasticity 141.12. Mathematical formulation of non-local elasticity 151.12.1. Integral form 151.12.2. Non-local modulus 171.12.3. Differential form equation of non-local elasticity 171.13. Non-local parameter 181.14. Non-local elasticity theory versus molecular dynamics 19Chapter 2. Non-local Elastic Rod Theory 212.1.Background 212.2. Governing equation of motion of the nanorod 242.3.Results and discussions 29Chapter 3. Non-local Elastic Beam Theories 333.1. Background 333.2. Non-local nanobeam model 363.2.1. Non-local Euler–Bernoulli beam theory 363.2.2. Non-local Timoshenko beam theory 433.2.3. Non-local Reddy beam theory 513.3. Torsional vibration of nanobeam 603.4. Comparison of the non-local beam theories 64Chapter 4. Non-local Elastic Plate Theories 694.1. Non-local plate for graphene sheets 694.2. Non-local plate constitutive relations 694.3. Free vibration of single-layer graphene sheets 724.3.1. Transverse-free vibration 734.3.2. Graphene sheets embedded in an elastic medium 754.4. Axially stressed nanoplate non-local theory 784.5. In-plane vibration 794.6. Buckling of graphene sheets 804.6.1. Uniaxial buckling 814.6.2. Graphene sheets embedded in an elastic medium 824.7. Summary 84Chapter 5. One-Dimensional Double-Nanostructure-Systems 875.1. Background 875.2. Revisiting non-local rod theory 905.2.1. Equations of motion of double-nanorod-system 915.2.2. Solution methodology 945.2.3. Clamped-clamped boundary condition 955.2.4. Clamped-free (cantilever) boundary condition 965.2.5. Longitudinal vibration of auxiliary (secondary) nanorod 985.3. Axial vibration of double-rod system 995.3.1. Effect of the non-local parameter in the clamped-type DNRS 1005.3.2. Coupling spring stiffness in DNRS 1025.3.3. Higher modes of vibration in DNRS 1025.3.4. Effect of non-local parameter, spring stiffness and higher modes in cantilever-type-DNRS 1035.4. Summary 1045.5. Transverse vibration of double-nanobeam-systems 1045.5.1. Background 1055.5.2. Non-local double-nanobeam-system 1075.6. Vibration of non-local double-nanobeam-system 1105.7. Boundary conditions in non-local double-nanobeam-system 1115.8. Exact solutions of the frequency equations 1135.9. Discussions 1165.9.1. Effect of small scale on vibrating NDNBS 1175.9.2. Effect of the stiffness of the coupling springs on NDNBS 1205.9.3. Analysis of higher modes of NDNBS 1205.10. Summary 1215.11. Axial instability of double-nanobeam-systems 1225.11.1. Background 1235.11.2. Buckling equations of non-local doublenanobeam-systems 1245.12. Non-local boundary conditions of NDNBS 1265.13. Buckling states of double-nanobeam-system 1285.13.1. Out-of-phase buckling load: (w1-w20) 1285.13.2. In-phase buckling state: (w1– w2=0) 1295.13.3. One nanobeam is fixed: 1305.14. Coupled carbon nanotube systems 1305.15. Results and discussions on the scale-dependent buckling phenomenon 1315.15. Summary 136Chapter 6. Double-Nanoplate-Systems 1376.1. Double-nanoplate-system 1376.2. Vibration of double-nanoplate-system 1396.3. Equations of motion for non-local doublenanoplate-system 1396.4. Boundary conditions in non-local doublenanoplate-system 1426.5. Exact solutions of the frequency equations 1446.5.1. Both nanoplates of NDNPS are vibrating out-of-phase: 1446.5.2. Both nanoplates of NDNPS are vibrating in-phase: 1466.5.3. One nanoplate of NDNPS is stationary: 1476.5.4. Discussions 1486.5.5. Non-local double-nanobeam-system versus non-local double-nanoplate-system 1566.5.6. Summary 1576.6. Buckling behavior of double-nanoplate-systems 1586.6.1. Background 1596.6.2. Uniaxially compressed double-nanoplate-system 1606.6.3. Buckling states of double-nanoplate-system 1636.7. Results and discussion 1676.7.1. Coupled double-graphene-sheet-system 1676.7.2. Effect of small scale on NDNPS undergoing compression 1686.7.3. Effect of stiffness of coupling springs in NDNPS 1706.7.4. Effect of aspect ratio on NDNPS 1736.8. Summary 177Chapter 7. Multiple Nanostructure Systems 1797.1. Longitudinal vibration of a multi-nanorod system 1807.1.1. The governing equations of motion 1827.1.2. Exact solution 1857.1.3. Asymptotic analysis 1917.1.4. Numerical examples and discussions 1927.2. Transversal vibration and stability of a multiplenanobeam system 1977.2.1. The governing equations of motion 1997.2.2. Exact solution 2027.2.3. Asymptotic analysis 2097.2.4. Numerical examples and discussions 2107.3. Transversal vibration and buckling of the multinanoplate system 2157.3.1. The governing equations of motion 2177.3.2. Exact solutions 2217.3.3 Asymptotic analysis 2277.3.4. Numerical results and discussions 2277.4. Summary 232Chapter 8. Finite Element Method for Dynamics of Nonlocal Systems 2358.1. Introduction 2368.2. Finite element modeling of non-local dynamic systems 2398.2.1. Axial vibration of nanorods 2398.2.2. Bending vibration of nanobeams 2418.2.3. Transverse vibration of nanoplates 2438.3. Modal analysis of non-local dynamical systems 2478.3.1. Conditions for classical normal modes 2488.3.2. Non-local normal modes 2508.3.3. Approximate non-local normal modes 2518.4. Dynamics of damped non-local systems 2548.5. Numerical examples 2568.5.1. Axial vibration of a single-walled carbon nanotube 2568.5.2. Bending vibration of a double-walled carbon nanotube 2618.5.3. Transverse vibration of a single-layer graphene sheet 2658.6. Summary 269Chapter 9. Dynamic Finite Element Analysis of Nonlocal Rods: Axial Vibration 2719.1. Introduction 2729.2. Axial vibration of damped non-local rods 2759.2.1. Equation of motion 2759.2.2. Analysis of damped natural frequencies 2779.2.3. Asymptotic analysis of natural frequencies 2799.3. Dynamic finite element matrix 2819.3.1. Classical finite element of non-local rods 2819.3.2. Dynamic finite element for damped non-local rod 2829.4. Numerical results and discussions 2859.5. Summary 291Chapter 10. Non-local Nanosensor Based on Vibrating Graphene Sheets 29310.1. Introduction 29410.2. Free vibration of graphene sheets 29510.2.1. Vibration of SLGS without attached mass 29710.3. Natural vibration of SLGS with biofragment 29910.3.1. Attached masses are at the cantilever tip 30110.3.2. Attached masses arranged in a line along the width 30110.3.3. Attached masses arranged in a line along the length 30210.3.4. Attached masses arranged with arbitrary angle 30210.4. Sensor equations and sensitivity analysis 30310.5. Analysis of numerical results 30510.6. Summary 311Chapter 11. Introduction to Molecular Dynamics for Small-scale Structures 31311.1. Background 31311.2. Overview of the molecular dynamics simulation method 31411.3. Acknowledgement 325Bibliography 327Index 353