Nitride Semiconductor Technology
Power Electronics and Optoelectronic Devices
Inbunden, Engelska, 2020
2 089 kr
Beställningsvara. Skickas inom 11-20 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The book "Nitride Semiconductor Technology" provides an overview of nitride semiconductors and their uses in optoelectronics and power electronics devices. It explains the physical properties of those materials as well as their growth methods. Their applications in high electron mobility transistors, vertical power devices, LEDs, laser diodes, and vertical-cavity surface-emitting lasers are discussed in detail. The book further examines reliability issues in these materials and puts forward perspectives of integrating them with 2D materials for novel high-frequency and high-power devices. In summary, it covers nitride semiconductor technology from materials to devices and provides the basis for further research.
Produktinformation
- Utgivningsdatum2020-09-23
- Mått175 x 249 x 25 mm
- Vikt1 043 g
- FormatInbunden
- SpråkEngelska
- Antal sidor464
- FörlagWiley-VCH Verlag GmbH
- ISBN9783527347100
Tillhör följande kategorier
Fabrizio Roccaforte, PhD, is a Senior Researcher of the Italian National Research Council at the Institute for Microelectronics and Microsystems (CNR-IMM) in Catania, Italy. His research interests are in the field of wide band gap semiconductor materials and processing for power electronics devices. Mike Leszczynski, PhD, is a Professor of the Polish Academy of Sciences at the Institute of High Pressure Physics (Unipress) and a Vicepresident of TopGaN Lasers, Warsaw, Poland. His research interests are nitride semiconductors, optoelectronics, crystal growth, crystal defects, and X-ray diffraction.
- Preface xiAcknowledgments xv1 Introduction to Gallium Nitride Properties and Applications 1Fabrizio Roccaforte and Mike Leszczynski1.1 Historical Background 11.2 Basic Properties of Nitrides 41.2.1 Microstructure and Related Issues 71.2.2 Optical Properties 131.2.3 Electrical Properties 161.2.4 Two-Dimensional Electron Gas (2DEG) in AlGaN/GaN Heterostructures 191.3 Applications of GaN-Based Materials 231.3.1 Optoelectronic Devices 241.3.2 Power- and High-Frequency Electronic Devices 261.4 Summary 30Acknowledgments 31References 312 GaN-Based Materials: Substrates, Metalorganic Vapor-Phase Epitaxy, and Quantum Well Properties 41Ferdinand Scholz, Michal Bockowski, and Ewa Grzanka2.1 Introduction 412.2 Bulk GaN Growth 422.2.1 Hydride Vapor-Phase Epitaxy (HVPE) 432.2.2 Sodium Flux Growth Method 452.2.3 Ammonothermal Growth 462.3 MOVPE Growth 512.3.1 Basics About Nitride MOVPE 542.3.2 Epitaxy on Foreign Substrates 582.3.2.1 Sapphire as a Foreign Substrate 582.3.2.2 GaN on SiC and Si 602.3.3 Defect Reduction by ELOG, FACELO, etc. 622.3.4 In Situ ELOG by SiN Deposition 642.3.5 Doping of Nitrides 642.3.6 Growth of Other Binary and Ternary Nitrides 672.4 InGaN QWs: Growth and Decomposition 722.4.1 Growth of InGaN QWs on Polar, Nonpolar, and Semipolar GaN Substrates 722.4.2 Origins of In Fluctuations 752.4.3 Homogenization of InGaN QWs 782.4.4 Decomposition of the QWs 792.5 Summary 82Acknowledgments 82References 833 GaN-Based HEMTs for Millimeter-wave Applications 99Kathia Harrouche and Farid Medjdoub3.1 Introduction 993.2 Targeted Applications for GaN Millimeter-wave Devices 993.2.1 High-Power Amplification 1003.2.2 Broadband Amplifiers 1023.2.3 5G 1033.2.3.1 GaN for 5G 1043.2.3.2 GaN Base Station PAs 1063.2.3.3 Moving Forward to 6G 1083.3 GaN-based Material Designs for Millimeter-wave Applications 1083.3.1 Intrinsic Characteristics and Comparison with Other Materials for RF Devices 1083.3.2 Specific Material Systems for RF Devices 1143.4 Device Design and Fabrication of Millimeter-wave GaN Devices 1163.4.1 Description of Key Processing Steps for Various GaN Device Designs 1163.4.1.1 Device Scaling for Millimeter Wave 1163.4.1.2 T-shaped Gate Design 1163.4.1.3 Advanced Ohmic Contact Technology 1173.4.1.4 N-polar GaN HEMTs 1183.4.1.5 AlN-Based Device Performances 1193.4.1.6 InAlGaN-Based Device Performances 1213.4.2 State-of-the-art Millimeter-wave GaN Transistors 1223.5 Overview of MMIC Power Amplifiers 1233.5.1 MMIC Technology Using III-N Devices 1233.5.1.1 III–V Material-Based MMIC Technology 1233.5.1.2 Power Amplifiers 1243.5.1.3 Low-Noise Amplifier 1253.5.2 MMIC Examples from Ka-band to D-band Frequencies 1253.6 Summary 126References 1274 Technologies for Normally-off GaN HEMTs 137Giuseppe Greco, Patrick Fiorenza, Ferdinando Iucolano, and Fabrizio Roccaforte4.1 Introduction 1374.1.1 Threshold Voltage in AlGaN/GaN HEMTs 1384.2 GaN HEMT “Cascode” 1404.3 “True” Normally-off HEMT Technologies 1424.3.1 Recessed-gate HEMT 1424.3.2 Fluorinated HEMT 1454.3.3 Recessed-gate Hybrid MISHEMT 1494.3.4 p-GaN Gate HEMT 1554.4 Other Approaches 1634.5 Summary 164Acknowledgments 165References 1655 Vertical GaN Power Devices 177Srabanti Chowdhury and Dong Ji5.1 Introduction 1775.2 Vertical GaN Devices for Power Conversion 1775.3 Vertical GaN Transistors 1785.3.1 Current Aperture Vertical Electron Transistor (CAVET) 1785.3.2 Vertical MOSFETs 1825.4 High-Voltage Diodes in GaN 1855.5 Avalanche Electroluminescence in GaN P–N Diodes 1865.6 Impact Ionization Coefficients in GaN 1885.6.1 Impact of Impact Ionization Studies on Predictive Modeling 1935.7 Summary 193Acknowledgments 193References 1946 Reliability Issues in GaN Electronic Devices 199Milan Ťapajna and Christian Koller6.1 Introduction 1996.1.1 Reliability Testing and Failure Analysis of GaN HEMTs 2006.2 Reliability of GaN HEMTs for RF Applications 2046.2.1 AlGaN/GaN HEMTs 2046.2.1.1 Trapping Effects 2046.2.1.2 Gate-edge Degradation 2076.2.1.3 Hot Electron Degradation 2096.2.2 InAlN/GaN HEMTs 2116.2.2.1 Hot Electron Degradation 2126.2.2.2 Role of Hot Phonons 2146.2.3 Thermal Issues in RF GaN HEMTs 2156.3 Reliability and Robustness of GaN Power Switching Devices 2196.3.1 Parasitic Effects in the Carbon-Doped GaN Buffer 2216.3.1.1 Insulation of GaN Buffer by Carbon Doping 2216.3.1.2 Time-Dependent “Dielectric” Breakdown (TDDB) of the GaN Buffer 2236.3.1.3 Dynamic RDS,ON Due to Buffer Trapping 2256.3.2 Gate Degradation in p-GaN Switching HEMTs 2306.3.3 Vth Instabilities in GaN MISHEMTs 2336.3.3.1 Studies of PBTI in MISHEMTs 2376.4 Summary 241Acknowledgments 241References 2417 Light-Emitting Diodes 253Amit Yadav, Hideki Hirayama, and Edik U. Rafailov7.1 Introduction 2537.2 State-of-the-Art GaN LEDs 2547.2.1 Blue LEDs 2587.2.2 Green LEDs 2627.3 GaN White LEDs: Approaches and Properties 2647.3.1 Monolithic LEDs 2677.3.2 Phosphor-Covered LEDs 2717.4 AlGaN Deep UV LEDs 2757.4.1 Growth of High-Quality AlN and Increasing in Internal Quantum Efficiency (IQE) 2787.4.2 AlGaN-based UVC LEDs 2817.4.3 Increasing the Light Extraction Efficiency (LEE) 2827.5 Summary 287Acknowledgments 288References 2888 Laser Diodes Grown by Molecular Beam Epitaxy 301Greg Muziol, Henryk Turski, Marcin Siekacz, Marta Sawicka, and Czeslaw Skierbiszewski8.1 Introduction 3018.2 III-N Growth Fundamentals by Plasma-Assisted MBE 3038.2.1 Role of N-Flux for Efficient InGaN QWs 3048.3 Wide InGaN QWs – Beyond Quantum-Confined Stark Effect 3058.4 Long-Living Laser Diodes on Bulk Ammono-GaN 3138.5 Laser Diodes with Tunnel Junctions 3168.5.1 Stacks of Vertically Interconnected Laser Diodes 3198.5.2 Distributed Feedback Laser Diodes 3218.6 Summary 324Acknowledgments 324References 3259 Edge Emitting Laser Diodes and Superluminescent Diodes 333Szymon Stanczyk, Anna Kafar, Dario Schiavon, Stephen Najda, Thomas Slight, and Piotr Perlin9.1 Laser Diode: History and Development 3339.1.1 Optoelectronics Background 3339.1.2 Gallium Nitride Technology Breakthroughs 3359.1.3 Development of Nitride Laser Diodes 3379.2 Distributed Feedback Laser Diodes 3429.3 Superluminescent Diodes 3489.3.1 History of Superluminescent Diode Development 3489.3.2 Basic SLD Properties 3519.3.3 Challenges for SLD Optimization 3539.4 Semiconductor Optical Amplifiers 3549.5 Summary 357References 35810 Green and Blue Vertical-Cavity Surface-Emitting Lasers 367Yang Mei, Rong-Bin Xu, Huan Xu, and Bao-Ping Zhang10.1 Introduction 36710.1.1 Properties and Application of GaN VCSELs 36710.1.2 Brief History and Current Status of GaN VCSELs 36810.1.3 GaN VCSELs with Different DBRs 36910.1.3.1 GaN VCSELs with Hybrid DBR Structure 37010.1.3.2 GaN VCSELs with Double Dielectric DBR Structure 37110.2 Efficiency of Heat Dissipation of Different Device Structures 37210.2.1 Simulation of Heat Profile of the Device 37210.2.2 Dependence of Rth on Cavity Length 37310.3 Green VCSELs Based on InGaN QDs 37510.3.1 Advantages of QDs Compared with QWs 37510.3.2 Growth and Optical Properties of InGaN QDs 37710.3.3 Fabrication Process of VCSELs 37910.3.4 Properties of QD Green VCSELs 37910.4 Green VCSELs Based on Cavity-Enhanced Emission of Localized States in Blue Emitting InGaN QWs 38010.4.1 Cavity Effect 38010.4.2 Properties of Cavity-Enhanced Green VCSELs 38110.5 Dual-Wavelength Lasing Based on QD-in-QW Active Structure 38410.5.1 Characteristics of QD-in-QW Structure 38410.5.2 Lasing Characteristics of VCSELs 38610.6 Blue VCSELs with Different Lateral Confinements 38610.6.1 Design of Index-Guided Structure 38610.6.2 Emission Properties of VCSELs with Lateral Confinement 38810.7 Summary 389References 39011 Integration of 2DMaterials with Nitrides for Novel Electronic and Optoelectronic Applications 397Filippo Giannazzo, Emanuela Schilirò, Raffaella Lo Nigro, Pawel Prystawko, and Yvon Cordier11.1 Introduction 39711.2 Fabrication of 2D Material Heterostructures with Nitride Semiconductors 40011.2.1 Transfer of 2D Materials Grown on a Foreign Substrate 40011.2.2 Direct Growth of 2D Materials on Group III-Nitrides 40311.2.3 2D Materials as Templates for the Growth of Nitride Semiconductor Films 40711.3 Electronic Devices Based on 2D Materials/GaN Heterojunctions 41311.3.1 Band-to-band Tunneling Diodes Based on MoS2/GaN Heterojunctions 41311.3.2 Hot Electron Transistors with Graphene Base and Al(Ga)N/GaN Emitter 41411.4 Optoelectronic Devices Based on 2D Material Junctions with GaN 42111.4.1 GaN LEDs with Graphene-Transparent Conductive Electrodes 42111.4.2 MoS2/GaN Deep UV Photodetectors 42711.5 Applications of Graphene for Thermal Management in GaN HEMTs 42811.6 Summary 431Acknowledgments 431References 432Index 439