New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in $\mathbb {R}^n$
Häftad, Engelska, 2020
1 319 kr
Tillfälligt slut
The aim of this work is to adapt the complex analytic methods originating in modern Oka theory to the study of non-orientable conformal minimal surfaces in $\mathbb{R}^n$ for any $n\ge 3$. These methods, which the authors develop essentially from the first principles, enable them to prove that the space of conformal minimal immersions of a given bordered non-orientable surface to $\mathbb{R}^n$ is a real analytic Banach manifold, obtain approximation results of Runge-Mergelyan type for conformal minimal immersions from non-orientable surfaces, and show general position theorems for non-orientable conformal minimal surfaces in $\mathbb{R}^n$. The authors also give the first known example of a properly embedded non-orientable minimal surface in $\mathbb{R}^4$; a Mobius strip.All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in $\mathbb{R}^n$ with any given conformal structure, complete non-orientable minimal surfaces in $\mathbb{R}^n$ with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits $n$ hyperplanes of $\mathbb{CP}^{n-1}$ in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in $p$-convex domains of $\mathbb{R}^n$.
Produktinformation
- Utgivningsdatum2020-06-30
- Mått178 x 254 x undefined mm
- Vikt175 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- Antal sidor77
- FörlagAmerican Mathematical Society
- ISBN9781470441616