Neurorehabilitation Technology
Inbunden, Engelska, 2022
Av David J. Reinkensmeyer, Laura Marchal-Crespo, Volker Dietz
2 039 kr
Produktinformation
- Utgivningsdatum2022-11-16
- Mått178 x 254 x 46 mm
- Vikt1 966 g
- FormatInbunden
- SpråkEngelska
- Antal sidor785
- Upplaga3
- FörlagSpringer International Publishing AG
- ISBN9783031089947
Tillhör följande kategorier
David Reinkensmeyer is Professor in the Departments of Mechanical and Aerospace Engineering, Anatomy and Neurobiology, Biomedical Engineering, and Physical Medicine and Rehabilitation at the University of California Irvine. His research interests are in neuromuscular control, motor learning, robotics, and rehabilitation. A major goal of his research is to develop physically interacting, robotic and mechatronic devices to help the nervous system recover the ability to control movement of the arm, hand, and leg after neurologic injuries such as stroke and spinal cord injury. He is also investigating the computational mechanisms of human motor learning in order to provide a rational basis for designing movement training devices. He is Editor-in-Chief of the Journal of Neuroengineering and Rehabilitation. His laboratory has helped develop a variety of robotic devices for manipulating and measuring movement in humans and rodents, including two devices that have been successfully commercialized as Flint Rehabilitation’s MusicGlove and as Hocoma’s ArmeoSpring. He is a fellow of the American Institute for Medical and Biological Engineering.Laura Marchal-Crespo is Associate Professor at the Department of Cognitive Robotics, Faculty 3mE (Mechanical, Maritime and Materials Engineering), Delft University of Technology, The Netherlands. Her research focuses on the general areas of human-machine interaction and biological learning and, in particular, the use of robotic devices and immersive virtual reality for the assessment and rehabilitation of patients with acquired brain injuries such as stroke. A major goal of her research is to gain a better understanding of the underlying mechanisms associated with the acquisition of novel motor skills in order to develop innovative technology to improve neurorehabilitation. She develops intelligent controllers that modulate movement errors based on patients’ special needs, age, and training task characteristics using a wide selection of robotic devices for upper and lower limb rehabilitation. She further employs electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to identify neurocognitive markers underlying motor learning.Volker Dietz, neurologist, is Professor Emeritus and Former Director of Spinal Cord Injury Center and Chair of Paraplegiology, University of Zürich, Balgrist Hospital, Switzerland. His research is focused on neuroplasticity, neurorehabilitation technology and regeneration and his laboratory has developed the first robotic device for the training of stepping movements in paraplegic and hemiplegic patients, the 'Locomat'. He retired in 2009, having worked at the University of Zürich since 1992. He is currently Senior Research Professor at the University Hospital Balgrist. Previously he had an educational grant at the National Institute for Neurology, Queen Square, London and after he held a position at the University of Freiburg and was guest professor at theMiami project to cure paralysis. He has been on the editorial board of the several journals of neurology and neurosciences. He has been awarded various honors and awards including the prestigious Sobek prize for novel achievements in neurorehabilitation in 2006 and the Schellenberg Prize for outstanding research in paraplegia in 2012.
- Introduction: Overview of the book.- Part I: Basic framework: Movement recovery and neuroplasticity.- Learning in the damaged brain/spinal cord: Neuroplasticity.- Movement neuroscience foundations of neurorehabilitation.- Recovery of sensorimotor functions after stroke and SCI: Neurophysiological basis of rehabilitation technology.- Part II: From movement physiology to technology application.- The upper limb after SCI: Use of technology in the assessment and rehabilitation.- Implementation of impairment based neuro-rehabilitation devices and technologies following brain injury.- The hand after stroke and SCI: Restoration of function with technology.- Neural coupling in movement coordination: Implications for rehabilitation technology.- Robotic gait training in specific neurological conditions: Rationale and application.- Part III: Principles for interactive rehabilitation technology.- Designing technology solutions for rehabilitation challenge that optimize motor performance.- Psychophysiological integration of humans and machines for rehabilitation.- Sensory-motor interactions and the manipulation of movement error.- Role of haptic interactions with machines for promoting motor learning.- Implementation of robots into rehabilitation programs: Meeting the requirements and expectations of professional and end users.- Application of rehabilitation technologies in children undergoing neurorehabilitation.- Part IV: Assessment technology and predictive modeling.- Robotic technologies and digital health metrics for assessing sensorimotor disability.- Computational neurorehabilitation.- Precision rehabilitation: Can neurorehabilitation technology help make it a realistic target?- Part V: General technological approaches in neurorehabilitation.- Spinal cord stimulation to enable leg motor control And walking in people with spinal cord injury.- Functional electrical stimulation therapy: Recovery of function following spinal cord injury and stroke.- Basis and clinical evidence of virtual reality-based rehabilitation of sensorimotor impairments after stroke.- Wearable sensors for stroke rehabilitation.- BCI-based neuroprostheses and physiotherapies for stroke motor rehabilitation.- Passive devices for upper limb training.- Mobile technologies for cognitive rehabilitation.- Telerehabilitation technology.- Part VI: Robotic technologies for neurorehabilitation: Upper extremity.- Forging Mens et Manus: The MIT experience in upper extremity robotic therapy.- Three-dimensional multi-degree-of-freedom arm therapy robot (armin).- Upper extremity movement training with mechanically assistive devices.- Part VII: Robotic technologies for neurorehabilitation: Gait and balance.- Technology of the robotic gait orthosis lokomat.- Using robotic exoskeletons for over-ground locomotor training.- Beyond human or robot administered treadmill training.- Toward flexible assistance for locomotor training: Design and clinical testing of a cable-driven robot for stroke, spinalcord injury, and cerebral palsy.- Body weight support devices for overground gait and balance training.- Epilogue: The ongoing debate over robots in neurorehabilitation.
Du kanske också är intresserad av
Oxford Textbook of Neurorehabilitation
Ward Dietz, WARD DIETZ, Volker Dietz, Nick S. Ward, Nick Ward, Switzerland) Dietz, Volker (Professor, Professor, Spinal Cord Injury Center, Balgrist University Hospital Zurich, Zurich, United Kingdom) Ward, Nick (Reader in Clinical Neurology & Honorary Consultant Neurologist, Reader in Clinical Neurology & Honorary Consultant Neurologist, The National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London
3 269 kr