Nanophotonics
Inbunden, Engelska, 2006
Av Hervé Rigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, Herve (Fresnel Institute in France) Rigneault, France) Lourtioz, Jean-Michel (CNRS, Claude (Director of the Laboratoire Pierre Aigrain) Delalande, France) Levenson, Ariel (Centre of Nanosciences of the Paris-Region
2 749 kr
Produktinformation
- Utgivningsdatum2006-06-29
- Mått160 x 241 x 22 mm
- Vikt617 g
- FormatInbunden
- SpråkEngelska
- Antal sidor324
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781905209286
Tillhör följande kategorier
Hervé Rigneault leads a group of researchers at the Fresnel Institute in France in the field of nanobiophotonics. Jean-Michel Lourtioz coordinates the French network on nanophotonics. Claude Delalande is currently working on the optical properties of semiconductor nanostructures and has been Director of theLaboratoire Pierre Aigrain since 1999. Juan Ariel Levenson is the leader of the Centre of Nanosciences of the Paris-Region, France.
- Preface 13Chapter 1. Photonic Crystals: From Microphotonics to Nanophotonics 17Pierre VIKTOROVITCH1.1. Introduction 171.2. Reminders and prerequisites 191.2.1. Maxwell equations 191.2.1.1. Optical modes 201.2.1.2. Dispersion characteristics 201.2.2. A simple case: three-dimensional and homogeneous free space 201.2.3. Structuration of free space and optical mode engineering 211.2.4. Examples of space structuration: objects with reduced dimensionality 221.2.4.1. Two 3D sub-spaces 221.2.4.2. Two-dimensional isotropic propagation: planar cavity 241.2.4.3. One-dimensional propagation: photonic wire 251.2.4.4. Case of index guiding (two- or one-dimensionality) 261.2.4.5. Zero-dimensionality: optical (micro)-cavity 261.2.5. Epilogue 271.3. 1D photonic crystals 281.3.1. Bloch modes 291.3.2. Dispersion characteristics of a 1D periodic medium 301.3.2.1. Genesis and description of dispersion characteristics 301.3.2.2. Density of modes along the dispersion characteristics 321.3.3. Dynamics of Bloch modes 331.3.3.1. Coupled mode theory 331.3.3.2. Lifetime of a Bloch mode 341.3.3.3. Merit factor of a Bloch mode 351.3.4. The distinctive features of photonic crystals 351.3.5. Localized defect in a photonic band gap or optical microcavity 361.3.5.1. Donor and acceptor levels 371.3.5.2. Properties of cavity modes in a 1DPC 381.3.5.3. Fabry-Perot type optical filter 391.3.6. 1D photonic crystal in a dielectric waveguide and waveguided Bloch modes 401.3.6.1. Various diffractive coupling processes between optical modes 401.3.6.2. Determination of the dispersion characteristics of waveguided Bloch modes 421.3.6.3. Lifetime and merit factor of waveguided Bloch modes: radiation optical losses 431.3.6.4. Localized defect or optical microcavity 441.3.7. Epilogue 461.4. 3D photonic crystals 461.4.1. From dream 461.4.2. … to reality 471.5. 2D photonic crystals: the basics 491.5.1. Conceptual tools: Bloch modes, direct and reciprocal lattices, dispersion curves and surfaces 501.5.1.1. Bloch modes 501.5.1.2. Direct and reciprocal lattices 511.5.1.3. Dispersion curves and surfaces 521.5.2. 2D photonic crystal in a planar dielectric waveguide 541.5.2.1. An example of the potential of 2DPC in terms of angular resolution: the super-prism effect 561.5.2.2. Strategies for vertical confinement in 2DPC waveguided configurations 571.6. 2D photonic crystals: basic building blocks for planar integrated photonics 591.6.1. Fabrication: a planar technological approach 591.6.1.1. 2DPC formed in an InP membrane suspended in air 591.6.1.2. 2DPC formed in an InP membrane bonded onto silica on silicon by molecular bonding 601.6.2. Localized defect in the PBG or microcavity 621.6.3. Waveguiding structures 641.6.3.1. Propagation losses in a straight waveguide 661.6.3.2. Bends 671.6.3.3. The future of PC-based waveguides lies principally in the guiding of light 691.6.4. Wavelength selective transfer between two waveguides 701.6.5. Micro-lazers 731.6.5.1. Threshold power 741.6.5.2. Example: the case of the surface emitting Bloch mode lazer 751.6.6. Epilogue 771.7. Towards 2.5-dimensional Microphotonics 771.7.1. Basic concepts 771.7.2. Applications 801.8. General conclusion 811.9. References 82Chapter 2. Bidimensional Photonic Crystals for Photonic Integrated Circuits 85Anne TALNEAU2.1. Introduction 852.2. The three dimensions in space: planar waveguide perforated by a photonic crystal on InP substrate 862.2.1. Vertical confinement: a planar waveguide on substrate 862.2.2. In-plane confinement: intentional defects within the gap 872.2.2.1. Localized defects 882.2.2.2. Linear defects 882.2.3. Losses 892.3. Technology for drilling holes on InP-based materials 902.3.1. Mask generation 902.3.2. Dry-etching of InP-based semiconductor materials 912.4. Modal behavior and performance of structures 922.4.1. Passive structures 922.4.1.1. Straight guides, taper 932.4.1.2. Bend, combiner 962.4.1.3. Filters 1002.4.2. Active structures: lazers 1022.5. Conclusion 1042.6. References 105Chapter 3. Photonic Crystal Fibers 109Dominique PAGNOUX3.1. Introduction 1093.2. Two guiding principles in microstructured fibers 1123.3. Manufacture of microstructured fibers 1163.4. Modeling TIR-MOFs 1173.4.1. The “effective-V model” 1173.4.2. Modal methods for calculating the fields 1183.5. Main properties and applications of TIR-MOFs 1203.5.1. Single mode propagation 1203.5.2. Propagation loss 1203.5.3. Chromatic dispersion 1213.5.4. Birefringence 1233.5.5. Non-conventional effective areas 1243.6. Photonic bandgap fibers 1253.6.1. Propagation in photonic bandgap fibers 1253.6.2. Some applications of photonic crystal fibers 1273.7. Conclusion 1283.8. References 129Chapter 4. Quantum Dots in Optical Microcavities 135Jean-Michel GERARD4.1. Introduction 1354.2. Building blocks for solid-state CQED 1374.2.1. Self-assembled QDs as “artificial atoms” 1374.2.2. Solid-state optical microcavities 1394.3. QDs in microcavities: some basic CQED experiments 1424.3.1. Strong coupling regime 1424.3.2. Weak coupling regime: enhancement/inhibition of the SE rate and “nearly” single mode SE 1454.3.3. Applications of CQED effects to single photon sources and nanolazers 1504.4. References 154Chapter 5. Nonlinear Optics in Nano- and Microstructures 159Yannick DUMEIGE and Fabrice RAINERI5.1. Introduction 1595.2. Introduction to nonlinear optics 1605.2.1. Maxwell equations and nonlinear optics 1605.2.2. Second order nonlinear processes 1645.2.2.1. Three wave mixing 1655.2.2.2. Second harmonic generation 1665.2.2.3. Parametric amplification 1695.2.2.4. How can phase matching be achieved? 1705.2.2.5. Applications of second order nonlinearity 1735.2.3. Third order processes 1735.2.3.1. Four wave mixing 1735.2.3.2. Optical Kerr effect 1755.2.3.3. Nonlinear spectroscopy: Raman, Brillouin and Rayleigh scatterings 1775.3. Nonlinear optics of nano- or microstructured media 1775.3.1. Second order nonlinear optics in III–V semiconductors 1785.3.1.1. Quasi-phase matching in III–V semiconductors 1785.3.1.2. Quasi-phase matching in microcavity 1795.3.1.3. Bidimensional quasi-phase matching 1805.3.1.4. Form birefringence 1805.3.1.5. Phase matching in one-dimensional photonic crystals 1815.3.1.6. Phase matching in two-dimensional photonic crystal waveguide 1835.3.2. Third order nonlinear effects 1845.3.2.1. Continuum generation in microstructured optical fibers 1845.3.2.2. Optical reconfiguration of two-dimensional photonic crystal slabs 1845.3.2.3. Spatial solitons in microcavities 1865.4. Conclusion 1875.5. References 187Chapter 6. Third Order Optical Nonlinearities in Photonic Crystals 191Robert FREY, Philippe DELAYE and Gerald ROOSEN6.1. Introduction 1916.2. Third order nonlinear optic reminder 1926.2.1. Third order optical nonlinearities 1926.2.2. Some third order nonlinear optical processes 1946.2.3. Influence of the local field 1966.3. Local field in photonic crystals 1986.4. Nonlinearities in photonic crystals 2036.5. Conclusion 2046.6. References 204Chapter 7. Controling the Optical Near Field: Implications for Nanotechnology 207Frederique DE FORNEL7.1. Introduction 2077.2. How is the near field defined? 2087.2.1. Dipolar emission 2087.2.2. Diffraction by a sub-wavelength aperture 2127.2.3. Total internal reflection 2137.3. Optical near field microscopies 2177.3.1. Introduction 2177.3.2. Fundamental principles 2177.3.3. Realization of near field probes 2197.3.4. Imaging methods in near field optical microscopes 2207.3.5. Feedback 2227.3.6. What is actually measured in near field? 2237.3.7. PSTM configuration 2237.3.8. Apertureless microscope 2257.3.9. Effect of coherence on the structure of near field images 2267.4. Characterization of integrated-optical components 2277.4.1. Characterization of guided modes 2277.4.2. Photonic crystal waveguides 2297.4.3. Excitation of cavity modes 2307.4.4. Localized generation of surface plasmons 2327.5. Conclusion 2357.6. References 236Chapter 8. Sub-Wavelength Optics: Towards Plasmonics 239Alain DEREUX8.1. Technological context 2398.2. Detecting optical fields at the sub-wavelength scale 2408.2.1. Principle of sub-wavelength measurement 2408.2.2. Scattering theory of electromagnetic waves 2428.2.3. Electromagnetic LDOS 2448.2.4. PSTM detection of the electric or magnetic components of optical waves 2468.2.5. SNOM detection of the electromagnetic LDOS 2478.3. Localized plasmons 2498.3.1. Squeezing of the near-field by localized plasmons coupling 2508.3.2. Controling the coupling of localized plasmons 2518.4. Sub– optical devices 2548.4.1. Coupling in 2548.4.2. Sub– waveguides 2548.4.3. Towards plasmonics: plasmons on metal stripes 2558.4.4. Prototypes of submicron optical devices 2568.5. References 263Chapter 9. The Confined Universe of Electrons in Semiconductor Nanocrystals 265Maria CHAMARRO9.1. Introduction 2659.2. Electronic structure 2669.2.1. “Naif” model 2669.2.1.1. Absorption and luminescence spectra 2699.2.2. Fine electronic structure 2719.2.2.1. Size-selective excitation 2719.2.2.2. “Dark” electron-hole pair 2749.3. Micro-luminescence 2769.4. Auger effect 2799.5. Applications in nanophotonics 2819.5.1. Semiconductor nanocrystals: single photon sources 2819.5.2. Semiconductor nanocrystals: new fluorescent labels for biology 2839.5.3. Semiconductor nanocrystals: a new active material for tunable lazers 2859.6. Conclusions 2869.7. References 287Chapter 10. Nano-Biophotonics 293Herve RIGNEAULT and Pierre-Francois LENNE10.1. Introduction 29310.2. The cell: scale and constituents 29510.3. Origin and optical contrast mechanisms 29610.3.1. Classical contrast mechanisms: bright field, dark field, phase contrast and interferometric contrast 29710.3.2. The fluorescence contrast mechanism 29810.3.2.1. The lifetime contrast 30010.3.2.2. Resolving power in fluorescence microscopy 30110.3.3. Non-linear microscopy 30310.3.3.1. Second harmonic generation (SHG) 30410.3.3.2. Coherent anti-Stokes Raman scattering (CARS) 30510.4. Reduction of the observation volume 30710.4.1. Far field methods 30810.4.1.1. 4Pi microscopy 30810.4.1.2. Microscopy on a mirror 30910.4.1.3. Stimulated emission depletion: STED 30910.4.2. Near field methods 31110.4.2.1. NSOM 31210.4.2.2. TIRF 31210.4.2.3. Nanoholes 31310.5. Conclusion 31410.6. References 314List of Authors 319Index 323