$n$-Harmonic Mappings between Annuli
The Art of Integrating Free Lagrangians
Häftad, Engelska, 2012
1 119 kr
Tillfälligt slut
The central theme of this paper is the variational analysis of homeomorphisms $h: {\mathbb X} \overset{\textnormal{\tiny{onto}}}{\longrightarrow} {\mathbb Y}$ between two given domains ${\mathbb X}, {\mathbb Y} \subset {\mathbb R}^n$. The authors look for the extremal mappings in the Sobolev space ${\mathscr W}^{1,n}({\mathbb X},{\mathbb Y})$ which minimize the energy integral ${\mathscr E}_h=\int_{ {\mathbb X}} \,|\!|\, Dh(x) \,|\!|\,^n\, \textrm{d}x$. Because of the natural connections with quasiconformal mappings this $n$-harmonic alternative to the classical Dirichlet integral (for planar domains) has drawn the attention of researchers in Geometric Function Theory. Explicit analysis is made here for a pair of concentric spherical annuli where many unexpected phenomena about minimal $n$-harmonic mappings are observed. The underlying integration of nonlinear differential forms, called free Lagrangians, becomes truly a work of art.
Produktinformation
- Utgivningsdatum2012-07-01
- Vikt300 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- FörlagAmerican Mathematical Society
- ISBN9780821853573