Munson, Young and Okiishi's Fundamentals of Fluid Mechanics, International Adaptation
Häftad, Engelska, 2021
1 029 kr
Produktinformation
- Utgivningsdatum2021-06-28
- Mått10 x 10 x 10 mm
- Vikt454 g
- FormatHäftad
- SpråkEngelska
- Antal sidor784
- Upplaga9
- FörlagJohn Wiley & Sons Inc
- ISBN9781119703266
Tillhör följande kategorier
- 1 Intoduction 1Learning Objectives 11.1 Some Characteristics Of Fluids 31.2 Dimensions, Dimensional Homogeneity, And Units 41.2.1 Systems Of Units 71.3 Analysis Of Fluid Behavior 121.4 Measures Of Fluid Mass And Weight 121.4.1 Density 121.4.2 Specific Weight 141.4.3 Specific Gravity 141.5 Ideal Gas Law 141.6 Viscosity 171.7 Compressibility Of Fluids 231.7.1 Bulk Modulus 231.7.2 Compression And Expansion Of Gases 241.7.3 Speed Of Sound 251.8 Vapor Pressure 261.9 Surface Tension 271.10 A Brief Look Back In History 30Chapter Summary 32Key Equations 33References 33Questions And Problems 332 Fluid Statics 40Learning Objectives 402.1 Pressure At A Point 402.2 Basic Equation For Pressure Field 412.3 Pressure Variation In A Fluid At Rest 432.3.1 Incompressible Fluid 442.3.2 Compressible Fluid 472.4 Standard Atmosphere 482.5 Measurement Of Pressure 502.6 Manometry 522.6.1 Piezometer Tube 522.6.2 U-Tube Manometer 532.6.3 Inclined-Tube Manometer 552.7 Mechanical And Electronic Pressure-Measuring Devices 562.8 Hydrostatic Force On A Plane Surface And Pressure Diagram 592.8.1 Hydrostatic Force 592.8.2 Pressure Diagram 652.9 Hydrostatic Force On A Curved Surface 682.10 Buoyancy, Flotation, And Stability 702.10.1 Archimedes’ Principle 702.10.2 The Stability Of Bodies In Fluids 732.11 Pressure Variation In A Fluid With Rigid-Body Motion 752.11.1 Linear Motion 752.11.2 Rigid-Body Rotation 772.12 Equilibrium Of Moving Fluids (Special Case Of Fluid Statics) 79Chapter Summary 80Key Equations 80References 81Questions And Problems 813 Fluid Kinematics 99Learning Objectives 993.1 The Velocity Field 993.1.1 Eulerian And Lagrangian Flow Descriptions 1013.1.2 One-, Two-, And Threedimensional Flows 1033.1.3 Steady And Unsteady Flows 1043.1.4 Flow Patterns: Streamlines, Streaklines, And Pathlines 1053.2 The Acceleration Field 1083.2.1 Acceleration And The Material Derivative 1093.2.2 Unsteady Effects 1123.2.3 Convective Effects 1123.2.4 Streamline Coordinates 1153.3 Control Volume And System Representations 1173.4 The Reynolds Transport Theorem 1193.4.1 Derivation Of The Reynolds Transport Theorem 1213.4.2 Physical Interpretation 1253.4.3 Relationship To Material Derivative 1263.4.4 Steady And Unsteady Effects 1263.4.5 Moving Control Volumes 1283.4.6 Selection Of A Control Volume 130Chapter Summary 130Key Equations 131References 131Questions And Problems 1314 Elementary Fluid Dynamics— The Bernoulli Equation 139Learning Objectives 1394.1 Newton’s Second Law 1394.2 F = Ma Along A Streamline 1424.3 F = Ma Normal To A Streamline 1464.4 Physical Interpretations And Alternate Forms Of The Bernoulli Equation 1484.5 Static, Stagnation, Dynamic, And Total Pressure 1514.6 Applications Of The Bernoulli Equation 1564.6.1 Free Jets 1564.6.2 Confined Flows 1594.6.3 Flowrate Measurement 1654.7 The Energy Line And The Hydraulic Grade Line 1704.8 Restrictions On Use Of The Bernoulli Equation 1724.8.1 Compressibility Effects 1724.8.2 Unsteady Effects 1734.8.3 Rotational Effects 1744.8.4 Other Restrictions 175Chapter Summary 176Key Equations 176References 177Questions And Problems 1775 Finite Control Volume Analysis 192Learning Objectives 1925.1 Conservation Of Mass—The Continuity Equation 1935.1.1 Derivation Of The Continuity Equation 1935.1.2 Fixed, Nondeforming Control Volume 1955.1.3 Moving, Nondeforming Control Volume 2015.1.4 Deforming Control Volume 2035.2 Newton’s Second Law—The Linear Momentum And Moment-Of-Momentum Equations 2055.2.1 Derivation Of The Linear Momentum Equation 2055.2.2 Application Of The Linear Momentum Equation 2065.2.3 Derivation Of The Moment-Of-Momentum Equation 2195.2.4 Application Of The Moment-Ofmomentum Equation 2215.3 First Law Of Thermodynamics— The Energy Equation 2275.3.1 Derivation Of The Energy Equation 2275.3.2 Application Of The Energy Equation 2305.3.3 The Mechanical Energy Equation And The Bernoulli Equation 2345.3.4 Application Of The Energy Equation To Nonuniform Flows 2405.3.5 Comparison Of Various Forms Of The Energy Equation 2425.3.6 Combination Of The Energy Equation And The Moment-Of-Momentum Equation 244Chapter Summary 245Key Equations 245References 246Questions And Problems 2466 Differential Analysis Of Fluid Flow 262Learning Objectives 2626.1 Fluid Element Kinematics 2636.1.1 Velocity And Acceleration Fields Revisited 2636.1.2 Linear Motion And Deformation 2646.1.3 Angular Motion And Deformation 2656.2 Conservation Of Mass 2686.2.1 Differential Form Of Continuity Equation 2686.2.2 Cylindrical Polar Coordinates 2716.2.3 The Stream Function 2716.3 The Linear Momentum Equation 2746.3.1 Description Of Forces Acting On The Differential Element 2756.3.2 Equations Of Motion 2776.4 Inviscid Flow 2786.4.1 Euler’s Equations Of Motion 2786.4.2 The Bernoulli Equation 2796.4.3 Irrotational Flow 2806.4.4 The Bernoulli Equation For Irrotational Flow 2826.4.5 The Velocity Potential 2836.5 Some Basic, Plane Potential Flows 2856.5.1 Uniform Flow 2876.5.2 Source And Sink 2876.5.3 Vortex 2896.5.4 Doublet 2926.6 Superposition Of Basic, Plane Potential Flows 2946.6.1 Source In A Uniform Stream—Half-Body 2946.6.2 Rankine Ovals 2976.6.3 Flow Around A Circular Cylinder 2996.7 Other Aspects Of Potential Flow 3056.8 Viscous Flow 3056.8.1 Stress–Deformation Relationships 3066.8.2 The Navier–Stokes Equations 3066.9 Some Simple Solutions For Laminar, Viscous, Incompressible Flows 3086.9.1 Steady, Laminar Flow Between Fixed Parallel Plates 3086.9.2 Couette Flow 3106.9.3 Steady, Laminar Flow In Circular Tubes 3126.9.4 Steady, Axial, Laminar Flow In An Annulus 3156.10 Other Aspects Of Differential Analysis 3176.10.1 Numerical Methods 317Chapter Summary 318Key Equations 318References 319Questions And Problems 3197 Dimensional Analysis, Similitude, And Modeling 329Learning Objectives 3297.1 The Need For Dimensional Analysis 3307.2 Buckingham Pi Theorem 3327.3 Determination Of Pi Terms 3337.4 Some Directions About Dimensional Analysis 3397.4.1 Selection Of Variables 3397.4.2 Determination Of Reference Dimensions 3407.4.3 Uniqueness Of Pi Terms 3407.5 Determination Of Pi Terms By Inspection 3427.6 Common Dimensionless Groups In Fluid Mechanics 3447.7 Correlation Of Experimental Data 3497.7.1 Problems With One Pi Term 3497.7.2 Problems With Two Or More Pi Terms 3507.8 Modeling And Similitude 3527.8.1 Theory Of Models 3537.8.2 Model Scales 3567.8.3 Practical Aspects Of Using Models 3577.9 Typical Model Studies 3597.9.1 Flow Through Closed Conduits 3597.9.2 Flow Around Immersed Bodies 3617.9.3 Flow With A Free Surface 3657.10 Similitude Based On Governing Differential Equations 368Chapter Summary 371Key Equations 371References 372Questions And Problems 3728 Viscous Flow In Pipes 382Learning Objectives 3828.1 General Characteristics Of Pipe Flow 3838.1.1 Laminar Or Turbulent Flow 3848.1.2 Entrance Region And Fully Developed Flow 3868.1.3 Pressure And Shear Stress 3878.2 Fully Developed Laminar Flow 3888.2.1 From F = Ma Applied Directly To A Fluid Element 3898.2.2 From The Navier–Stokes Equations 3938.2.3 From Dimensional Analysis 3948.2.4 Energy Considerations 3958.3 Fully Developed Turbulent Flow 3978.3.1 Transition From Laminar To Turbulent Flow 3978.3.2 Turbulent Shear Stress 3998.3.3 Turbulent Velocity Profile 4048.3.4 Turbulence Modeling 4078.3.5 Chaos And Turbulence 4088.4 Pipe Flow Losses Via Dimensional Analysis 4088.4.1 Major Losses 4088.4.2 Minor Losses 4148.4.3 Noncircular Conduits 4238.5 Pipe Flow Examples 4268.5.1 Single Pipes 4268.5.2 Multiple Pipe Systems 4358.6 Pipe Flowrate Measurement 4398.6.1 Pipe Flowrate Meters 4398.6.2 Volume Flowmeters 4448.6.3 Multiphase Flow Measurement In Pipes 4458.6.4 Water Hammer And Their Measurements In Pipes 445Chapter Summary 447Key Equations 448References 448Questions And Problems 4499 Flow Over Immersed Bodies 462Learning Objectives 4629.1 General External Flow Characteristics 4639.1.1 Lift And Drag Concepts 4649.1.2 Characteristics Of Flow Past An Object 4679.2 Boundary Layer Characteristics 4719.2.1 Boundary Layer Structure And Thickness On A Flat Plate 4719.2.2 Prandtl / Blasius Boundary Layer Solution 4749.2.3 Momentum Integral Boundary Layer Equation For A Flat Plate 4789.2.4 Transition From Laminar To Turbulent Flow 4839.2.5 Turbulent Boundary Layer Flow 4859.2.6 Effects Of Pressure Gradient 4889.2.7 Momentum Integral Boundary Layer Equation With Nonzero Pressure Gradient 4939.3 Drag 4949.3.1 Friction Drag 4949.3.2 Pressure Drag 4969.3.3 Drag Coefficient Data And Examples 4989.4 Lift 5119.4.1 Surface Pressure Distribution 5139.4.2 Circulation 518Chapter Summary 523Key Equations 524References 524Questions And Problems 52510 Open-Channel Flow 535Learning Objectives 53510.1 General Characteristics Of Open-Channel Flow 53510.2 Surface Waves 53710.2.1 Wave Speed 53710.2.2 Froude Number Effects 54010.3 Energy Considerations 54210.3.1 Energy Balance 54210.3.2 Specific Energy 54310.4 Uniform Flow 54610.4.1 Uniform Flow Approximations 54610.4.2 The Chezy And Manning Equations 54710.4.3 Uniform Flow Examples 54910.5 Most Efficient Channel Section 55510.5.1 Trapezoidal Channel Section 55510.5.2 Triangular Channel Section 55710.6 Gradually Varied Flow 56010.7 Rapidly Varied Flow 56110.7.1 The Hydraulic Jump 56210.7.2 Sharp-Crested Weirs 56710.7.3 Broad-Crested Weirs 57010.7.4 Underflow (Sluice) Gates 572Chapter Summary 573Key Equations 573References 574Questions And Problems 57411 Compressible Flow 581Learning Objectives 58111.1 Ideal Gas Thermodynamics 58211.2 Stagnation Properties 58711.3 Mach Number And Speed Of Sound 58811.4 Compressible Flow Regimes 59311.5 Shock Waves 59711.5.1 Normal Shock 59711.6 Isentropic Flow 60311.6.1 Steady Isentropic Flow Of An Ideal Gas 60311.6.2 Incompressible Flow And The Bernoulli Equation 60611.6.3 The Critical State 60811.7 One-Dimensional Flow In A Variable Area Duct 60811.7.1 General Considerations 60911.7.2 Isentropic Flow Of An Ideal Gas With Area Change 61211.7.3 Operation Of A Converging Nozzle 61811.7.4 Operation Of A Converging–Diverging Nozzle 62011.8 Constant-Area Duct Flow With Friction 62411.8.1 Preliminary Consideration: Comparison With Incompressible Duct Flow 62411.8.2 The Fanno Line 62511.8.3 Adiabatic Frictional Flow (Fanno Flow) Of An Ideal Gas 62811.9 Frictionless Flow In A Constant-Area Duct With Heating Or Cooling 63611.9.1 The Rayleigh Line 63611.9.2 Frictionless Flow Of An Ideal Gas With Heating Or Cooling (Rayleigh Flow) 63911.9.3 Rayleigh Lines, Fanno Lines, And Normal Shocks 64211.10 Analogy Between Compressible And Open -Channel Flows 64311.11 Two-Dimensional Supersonic Flow 64411.12 Effects Of Compressibility In External Flow 646Chapter Summary 649Key Equations 650References 652Questions And Problems 65212 Turbomachines 657Learning Objectives 65712.1 Introduction 65812.2 Basic Energy Considerations 65912.3 Angular Momentum Considerations 66312.4 The Centrifugal Pump 66512.4.1 Theoretical Considerations 66612.4.2 Pump Performance Characteristics 67012.4.3 Net Positive Suction Head (Npsh) 67212.4.4 System Characteristics, Pump-System Matching, And Pump Selection 67412.5 Dimensionless Parameters And Similarity Laws 67812.5.1 Special Pump Scaling Laws 68012.5.2 Specific Speed 68112.5.3 Suction Specific Speed 68212.6 Axial-Flow And Mixed-Flow Pumps 68312.7 Turbines 68512.7.1 Impulse Turbines 68512.7.2 Reaction Turbines 69212.8 Fans 69512.9 Compressible Flow Turbomachines 69612.9.1 Compressors 69712.9.2 Compressible Flow Turbines 700Chapter Summary 702Key Equations 703References 704Questions And Problems 704Appendix A Computational Fluid Dynamics 713Appendix B Physical Properties Of Fluids 731Appendix C Properties Of The U.S. Standard Atmosphere 736Appendix D Compressible Flow Functions For An Ideal Gas With K = 1.4 738Appendix E Comprehensive Table Of Conversion Factors 746Index I- 1
Mer från samma författare
Young, Munson and Okiishi's A Brief Introduction to Fluid Mechanics, International Adaptation
John I. Hochstein, Andrew L. Gerhart, Philip M. Gerhart, John I. (University of Memphis; Stevens Institute of Technology; Pennsylvania State University; University of Akron) Hochstein, Andrew L. (Lawrence Technological University; University of Evansville; University of Wyoming; University of New Mexico) Gerhart, Philip M. (University of Evansville; University of Illinois at Urbana-Champaign; University of Akron) Gerhart
939 kr
Du kanske också är intresserad av
Young, Munson and Okiishi's A Brief Introduction to Fluid Mechanics, International Adaptation
John I. Hochstein, Andrew L. Gerhart, Philip M. Gerhart, John I. (University of Memphis; Stevens Institute of Technology; Pennsylvania State University; University of Akron) Hochstein, Andrew L. (Lawrence Technological University; University of Evansville; University of Wyoming; University of New Mexico) Gerhart, Philip M. (University of Evansville; University of Illinois at Urbana-Champaign; University of Akron) Gerhart
939 kr