Del 3 - Series In Approximations And Decompositions
Multivariate Approximation : From Cagd To Wavelets - Proceedings Of The International Workshop
Häftad, Engelska, 1993
Av K JETTER & F I UTERAS, Kurt Jetter, F I Utreras, F. I. Utreras
1 329 kr
Tillfälligt slut
Produktinformation
- Utgivningsdatum1993-11-01
- SpråkEngelska
- SerieSeries In Approximations And Decompositions
- Antal sidor348
- FörlagWorld Scientific Publishing Co Pte Ltd
- EAN9789810238063
Hoppa över listan
Du kanske också är intresserad av
Topics in Multivariate Approximation and Interpolation
Kurt Jetter, Martin Buhmann, Werner Haussmann, Robert Schaback, Joachim Stoeckler, Germany) Jetter, Kurt (Universitat Hohenheim, Institut fur Angewandte Mathematik und Statistik, Stuttgart, Germany) Buhmann, Martin (Universitaet Giessen, Math. Institut, Germany) Haussmann, Werner (Universitaet Duisburg-Essen, Institut f. Mathematik, Germany) Schaback, Robert (Universitaet Goettingen, Inst. F. Numerische und Angewandte Mathematik, Germany) Stoeckler, Joachim (Universitaet Dortmund, Fachbereich Mathematik
2 409 kr
Tillhör följande kategorier
- Characterization and creation of wavelet frames, C. Chui; quadrature mirror filters, low crest factor arrays, functions achieving optimal uncertainty principles and complete orthonormal sequences - a unified approach, J.S. Byrnes; quantitative aspects of wavelet bases in L2, J. Stoeckler; numerical aspects and approximation orders of optimal interpolation, K. Jetter; quantitative approximation results for sigma-pi-type neural network operators, B. Lenze; on the existence of Gauss-like node distributions on high-dimensional spheres, M. Reimer; radical basis function interpolation to finitely many scattered data, R. Schaback; fast algorithms for the simultaneous polynomial approximation, M. Tasche; some remarks on multivariate polynomial interpolation, A. Le Mehaute; computing cardinal interpolation and wavelets by using convolution products, C. Rabut; interpolation with radial basis functions a survey and recent results, M. Buhman; quasi-interpolation with the Gaussian radial functions, W. Light; multiresolution and prewavelets using radial basis functions, F. Utreras. (Part contents)