Del 1857

Multiple Classifier Systems

First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings

Häftad, Engelska, 2000

Av Josef Kittler, Fabio Roli

729 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Many theoretical and experimental studies have shown that a multiple classi?er system is an e?ective technique for reducing prediction errors [9,10,11,20,19]. These studies identify mainly three elements that characterize a set of cl- si?ers: -Therepresentationoftheinput(whateachindividualclassi?erreceivesby wayofinput). -Thearchitectureoftheindividualclassi?ers(algorithmsandparametri- tion). - The way to cause these classi?ers to take a decision together. Itcanbeassumedthatacombinationmethodise?cientifeachindividualcl- si?ermakeserrors'inadi?erentway',sothatitcanbeexpectedthatmostofthe classi?ers can correct the mistakes that an individual one does [1,19]. The term 'weak classi?ers' refers to classi?ers whose capacity has been reduced in some way so as to increase their prediction diversity. Either their internal architecture issimple(e.g.,theyusemono-layerperceptronsinsteadofmoresophisticated neural networks), or they are prevented from using all the information available. Sinceeachclassi?erseesdi?erentsectionsofthelearningset,theerrorcorre- tion among them is reduced. It has been shown that the majority vote is the beststrategyiftheerrorsamongtheclassi?ersarenotcorrelated.Moreover, in real applications, the majority vote also appears to be as e?cient as more sophisticated decision rules [2,13]. Onemethodofgeneratingadiversesetofclassi?ersistoupsetsomeaspect ofthetraininginputofwhichtheclassi?erisrather unstable. In the present paper,westudytwodistinctwaystocreatesuchweakenedclassi?ers;i.e.learning set resampling (using the 'Bagging' approach [5]), and random feature subset selection (using 'MFS', a Multiple Feature Subsets approach [3]). Other recent and similar techniques are not discussed here but are also based on modi?cations to the training and/or the feature set [7,8,12,21].

Produktinformation

  • Utgivningsdatum2000-06-14
  • Mått155 x 235 x 23 mm
  • Vikt639 g
  • FormatHäftad
  • SpråkEngelska
  • SerieLecture Notes in Computer Science
  • Antal sidor408
  • Upplaga2000
  • FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
  • ISBN9783540677048