829 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Finns i fler format (1)


This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the ‘individual sample as mean’ training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.Key features:Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classesDiscusses range of fuzzy/deep learning models capable to extract specific single class and separates noiseDescribes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a classSupports multi-sensor and multi-temporal data processing through in-house SMIC softwareIncludes case studies and practical applications for single class mappingThis book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.

Produktinformation

  • Utgivningsdatum2025-01-30
  • Mått156 x 234 x 15 mm
  • Vikt330 g
  • FormatHäftad
  • SpråkEngelska
  • Antal sidor148
  • FörlagTaylor & Francis Ltd
  • ISBN9781032446523

Mer från samma författare

Du kanske också är intresserad av

Hitster - Christmas

Hitster - Christmas

Jumbo

219 kr259 kr

Hitster Original

Hitster Original

Jumbo

299 kr379 kr

Kafé Pumpkin Spice
  • Nyhet
Del 1