Multi-mechanism Modeling of Inelastic Material Behavior
Inbunden, Engelska, 2018
Av Georges Cailletaud, Kacem Sai, Lakhdar Taleb, France) Cailletaud, Georges (Mines ParisTech, Tunisia) Sai, Kacem (School of Engineering (ENI), Sfax, France) Taleb, Lakhdar (INSA Rouen
2 299 kr
Produktinformation
- Utgivningsdatum2018-01-09
- Mått163 x 236 x 23 mm
- Vikt590 g
- FormatInbunden
- SpråkEngelska
- Antal sidor288
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781848215801
Tillhör följande kategorier
Georges Cailletaud is Professor at Mines ParisTech in France, teaching mechanics of materials and structures.Kacem Saï is Professor of Mechanical Engineering at the School of Engineering (ENI) in Sfax, Tunisia.Lakhdar Taleb is Professor of Mechanical Engineering at the National Institute of Applied Sciences (INSA) in Rouen, France.
- Preface xiIntroduction xiiiChapter 1. State of the Art 11.1. Motivation from the microstructure 11.2. Building bricks 61.2.1. Criteria 71.2.2. Isotropic hardening rules 121.2.3. Kinematic hardening rules (KHR) 171.2.4. Plastic modulus 191.2.5. Viscosity 241.3. Scale transition rules 271.3.1. General remarks on scale transition rules 271.3.2. Scale transition rules for the MM model 291.4. Large deformation 301.5. Brief history of the MM models 32Chapter 2. Model Formulation 352.1. Thermodynamic framework 352.2. Model with various mechanisms and various criteria: the 2M2C model 372.3. Model with various mechanisms and one criterion: the 2M1C model 392.4. Comparison with the unified model 402.5. Isotropic hardening rules 412.5.1. Isotropic hardening for models with various mechanisms and one criterion 412.5.2. Isotropic hardening for models with various mechanisms and various criteria 432.6. Kinematic hardening rules 452.6.1. KHR: models with various mechanisms and various criteria 452.6.2. KHR: models with various mechanisms and one criterion 462.7. Computation of the inelastic multipliers 462.7.1. Flow rate for the 2M1C model 472.7.2. Flow rates for the 2M2C model 47Chapter 3. Typical MM Responses 513.1. Some MM model variants 513.1.1. Initial MM models 513.1.2. Updated 2M1C models after [TAL 06] 533.1.3. Updated MM models after [SAÏ 07] 533.1.4. A general nMnC model 543.1.5. Generalization of the 2M1C model 563.2. Creep–plasticity interaction 563.3. Rate sensitivity for the 2M2C model 583.4. Stabilized behavior of viscoplastic 2M1C model 593.5. Closed-form solution for ratcheting behavior of the 2M2C model: case of linear kinematic hardening rules 603.6. Ratcheting for 2M1C model 643.7. Ratcheting behavior of the 10M10C model 673.8. Extra-hardening under non-proportional loading 693.9. Static recovery effect 72Chapter 4. Comparison with Experimental Databases 774.1. Inconel 718 794.1.1. Context of the case study 794.1.2. Particular model features 794.1.3. Numerical results 794.2. Deformation mechanisms of Ni–Ti shape memory alloy 804.2.1. Context of the case study 804.2.2. Particular model features 824.2.3. Numerical results 824.3. N18 alloy 834.3.1. Context of the case study 834.3.2. Particular model features 844.3.3. Numerical results 854.4. Carbon steel CS1026 874.4.1. Context of the case study 874.4.2. Particular model features 874.4.3. Numerical results 884.5. Thermo-mechanical behavior of 55NiCrMoV7 894.5.1. Context of the case study 894.5.2. Particular model features 904.5.3. Numerical results 914.6. 2017 Aluminum alloy 944.6.1. 2017A, [SAÏ 12] 944.6.2. 2017A, [TAL 15] 974.7. 304 austenitic stainless steel 1014.7.1. 304SS at room temperature [HAS 08] 1014.7.2. 304SS at room temperature [TAL 11] 1024.7.3. 304SS at 350◦C [TAL 14] 1054.7.4. 304SS at room temperature [HAS 94a], 2M1C-3M1C 1074.7.5. 304SS at room temperature [HAS 08, TAL 10], 2M1C-3M1C 1124.8. 316 austenitic stainless steel 1164.8.1. 316SS at room temperature [POR 00] 1164.8.2. 316SS at room temperature [TAL 15] 1194.8.3. 316SS at 350◦C [TAL 13b, TAL 14] 1214.8.4. 316SS at room temperature [POR 00], 3M1C model 1234.9. Recrystallized Zirconium alloy 4 [PRI 08] 1244.9.1. Context of the case study 1244.9.2. Particular model features 1254.9.3. Numerical results 1264.10. Semi-crystalline polymers [REG 09b] 1264.10.1. Context of the case study 1264.10.2. Particular model features 1284.10.3. Numerical results 1284.11. Glassy polymers [JER 14] 1314.11.1. Context of the case study 1314.11.2. Particular model features 1324.11.3. Numerical results 1334.12. Copper-zinc alloy CuZn27 [TAL 15] 1364.12.1. Context of the case study 1364.12.2. Numerical results 1364.13. Ferritic steel 35NiCrMo16 [TAL 15] 1394.13.1. Context of the case study 1394.13.2. Numerical results 1394.14. Ferritic steel XC18 [TAL 13a] 1414.14.1. Context of the case study 1414.14.2. Numerical results 1414.15. Phase transformation in titanium alloys Ti6Al4V [LON 09] 1434.15.1. Context of the case study 1434.15.2. Particular model features 1434.15.3. Numerical results 144Chapter 5. MM Damage-Plasticity Models 1475.1. MM models based on the GTN approach 1485.1.1. Damage in the 2M1C model based on the GTN approach 1495.1.2. Damage in the 2M2C model based on the GTN approach 1505.2. MM models coupled with CDM theory 1515.2.1. 2M1C model “Strain Equivalence” 1535.2.2. 2M2C model “Strain Equivalence” 1545.2.3. 2M1C model “Energy Equivalence” 1565.2.4. 2M2C model “Energy Equivalence” 1575.3. Two plastic mechanisms combined with a damage mechanism 1595.4. MM models taking into account volume change (CDM theory) 1625.4.1. 2M2C model for compressible materials, CDM theory 1655.4.2. MM models for compressible materials, CDM theory, two damage variables 1675.5. Damage behavior of mortar-rubber aggregate mixtures 167Chapter 6. Finite Element Implementation 1716.1. Implementations of particular models 1716.1.1. Basic version of the 2M1C model 1726.1.2. β models 1756.2. Creep–plasticity interaction in a notched specimen 1836.3. FE analysis of plane forging of polycarbonate specimens 1846.4. FE simulation of bulging of a 304SS sheet 1886.5. FE simulation of PA6 notched specimens 1896.6. Finite Element codes 1986.6.1. ZeBuLoN: explicit integration 1986.6.2. ABAQUS: explicit integration 1996.6.3. ANSYS: explicit integration 2066.6.4. ZeBuLoN: implicit integration 2146.6.5. ABAQUS: implicit integration 2166.6.6. ANSYS: implicit integration 233Bibliography 253Index 265
Mer från samma författare
Nickel Base Single Crystals Across Length Scales
Loe�z Naz�, Vincent Maurel, Gunther Eggeler, Jonathan Cormier, Georges Cailletaud, Loeïz Nazé, France) Naze, Loeiz (Associate Professor, Mines ParisTech, France) Maurel, Vincent (Senior Scientist, Centre des Materiaux, Mines ParisTech, Germany) Eggeler, Gunther (Chair for Materials Science and Engineering, Ruhr-Universitat Bochum, France) Cormier, Jonathan (Associate Professor, ISAE-ENSMA, France) Cailletaud, Georges (Professor, Mines Paris Tech, Loeiz Naze
2 769 kr
Du kanske också är intresserad av
Nickel Base Single Crystals Across Length Scales
Loe�z Naz�, Vincent Maurel, Gunther Eggeler, Jonathan Cormier, Georges Cailletaud, Loeïz Nazé, France) Naze, Loeiz (Associate Professor, Mines ParisTech, France) Maurel, Vincent (Senior Scientist, Centre des Materiaux, Mines ParisTech, Germany) Eggeler, Gunther (Chair for Materials Science and Engineering, Ruhr-Universitat Bochum, France) Cormier, Jonathan (Associate Professor, ISAE-ENSMA, France) Cailletaud, Georges (Professor, Mines Paris Tech, Loeiz Naze
2 769 kr