Movement Equations 2
Mathematical and Methodological Supplements
Inbunden, Engelska, 2017
2 269 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The formalism processing of unbuckled solids mechanics involves several mathematical tools which are to be mastered at the same time. This volume collects the main points which take place in the course of the formalism, so that the user immediately finds what he needs without looking for it. Furthermore, the book contains a methodological formulary to guide the user in his approach.
Produktinformation
- Utgivningsdatum2017-01-13
- Mått163 x 239 x 15 mm
- Vikt431 g
- SpråkEngelska
- Antal sidor200
- FörlagISTE Ltd and John Wiley & Sons Inc
- EAN9781786300331
Tillhör följande kategorier
Michel BOREL, Retired since 2010, mechanics lecturer at CNAM Center in Versailles (1971-1999); associated professor at Petroleum and Motors National high School - ENSPM (1978-2008); engineer at Bertin Society (1970-1980); engineer at General Armement Direction - DGA (1980-2009). Georges VÉNIZÉLOS, Professor, Chair of Mechanical Systems Designing, Conservatoire National des Arts et Métiers (CNAM).
- Introduction xiTable of Notations xiiiChapter 1. Vector Calculus 11.1. Vector space 11.1.1. Definition 11.1.2. Vector space – dimension – basis 21.1.3. Affine space 31.2. Affine space of dimension 3 – free vector 41.3. Scalar product a⋅b 51.3.1. Properties of the scalar product 61.3.2. Scalar square – unit vector 61.3.3. Geometric interpretation of the scalar product 71.3.4. Solving the equation a�� ⋅ x�� = 0 91.4. Vector product a ∧ b 91.4.1. Definition 91.4.2. Geometric interpretation of the vector product 101.4.3. Properties of vector product 111.4.4. Solving the equation a ∧ x = b 111.5. Mixed product (a ,b, c ) 121.5.1. Definition 121.5.2. Geometric interpretation of the mixed product 121.5.3. Properties of the mixed product 131.6. Vector calculus in the affine space of dimension 3 151.6.1. Orthonormal basis 151.6.2. Analytical expression of the scalar product 161.6.3. Analytical expression of the vector product 161.6.4. Analytical expression of the mixed product 171.7. Applications of vector calculus 181.7.1. Double vector product 181.7.2. Resolving the equation a�� ⋅ x�� = b 221.7.3. Resolving the equation a ∧ x = b 231.7.4. Equality of Lagrange 251.7.5. Equations of planes 251.7.6. Relations within the triangle 271.8. Vectors and basis changes 281.8.1. Einstein’s convention 281.8.2. Transition table from basis (e) to basis (E) 301.8.3. Characterization of the transition table 32Chatper 2. Torsors and Torsor Calculus 352.1. Vector sets 352.1.1. Discrete set of vectors 352.1.2. Set of vectors defined on a continuum 362.2. Introduction to torsors 372.2.1. Definition 372.2.2. Equivalence of vector families 382.3. Algebra torsors 382.3.1. Equality of two torsors 382.3.2. Linear combination of torsors 392.3.3. Null torsors 392.3.4. Opposing torsor 402.3.5. Product of two torsors 402.3.6. Scalar moment of a torsor – equiprojectivity 412.3.7. Invariant scalar of a torsor 432.4. Characterization and classification of torsors 432.4.1. Torsors with a null resultant 432.4.2. Torsors with a no-null resultant 452.5. Derivation torsors 482.5.1. Torsor dependent on a single parameter q 492.5.2. Torsor dependent of n parameters qi functions of p 512.5.3. Explicitly dependent torsor of n + 1 parameters 52Chapter 3. Derivation of Vector Functions 553.1. Derivative vector: definition and properties 553.2. Derivative of a function in a basis 563.3. Deriving a vector function of a variable 573.3.1. Relations between derivatives of a function in different bases 573.3.2. Differential form associated with two bases 633.4. Deriving a vector function of two variables 653.5. Deriving a vector function of n variables 683.6. Explicit intervention of the variable p 703.7. Relative rotation rate of a basis relative to another 71Chapter 4. Vector Functions of One Variable Skew Curves 734.1. Vector function of one variable 734.2. Tangent at a point M 744.3. Unit tangent vector τ ( q) 764.4. Main normal vector ( ) q ν 774.5. Unit binormal vector ( ) q β 794.6. Frenet’s basis 804.7. Curvilinear abscissa 814.8. Curvature, curvature center and curvature radius 834.9. Torsion and torsion radius 844.10. Orientation in (λ) of the Frenet basis 87Chapter 5. Vector Functions of Two Variables Surfaces 915.1. Representation of a vector function of two variables 915.1.1. Coordinate curves 915.1.2. Regular or singular point – tangent plane – unit normal vector 935.1.3. Distinctive surfaces 955.1.4. Ruled surfaces 1015.1.5. Area element 1105.2. General properties of surfaces 1115.2.1. First quadratic form 1115.2.2. Darboux–Ribaucour’s trihedral 1145.2.3. Second quadratic form 1195.2.4. Meusnier’s theorems 1215.2.5. Geodesic torsion 1235.2.6. Prominent curves traced on a surface 1255.2.7. Directions and principal curvatures of a surface 127Chapter 6. Vector Function of Three Variables: Volumes 1356.1. Vector functions of three variables 1356.1.1. Coordinate surfaces 1356.1.2. Coordinate curves 1366.1.3. Orthogonal curvilinear coordinates 1366.2. Volume element 1376.2.1. Definition 1376.2.2. Applications to traditional coordinate systems 1386.3. Rotation rate of the local basis 1396.3.1. Calculation of the partial rotation rate 1δ (λ ,e) 1406.3.2. Calculation of the rotation rate 143Chapter 7. Linear Operators 1457.1. Definition 1457.2. Intrinsic properties 1457.3. Algebra of linear operators 1477.3.1. Unit operator 1477.3.2. Equality of two linear operators 1477.3.3. Product of a linear operator by a scalar 1477.3.4. Sum of two linear operators 1487.3.5. Multiplying two linear operators 1487.4. Bilinear form 1497.5. Quadratic form 1507.6. Linear operator and basis change 1507.7. Examples of linear operators 1527.7.1. Operation f = a ^ F 1527.7.2. Operation f = a ^ (a ^ F) 1527.7.3. Operation f = a(b ⋅ F) 1537.7.4. Operation f = a ^ (F ^ a) 1557.8. Vector rotation Ru��,a 1567.8.1. Expression of the vector rotation 1567.8.2. Quaternion associated with the vector rotation Ru��,a 1597.8.3. Matrix representation of the vector rotation 1607.8.4. Basis change and rotation vector 162Chapter 8. Homogeneity and Dimension 1658.1. Notion of homogeneity 1658.2. Dimension 1658.3. Standard mechanical dimensions 1668.4. Using dimensional equations 168Bibliography 171Index 173