Molten Salts Chemistry and Technology
Inbunden, Engelska, 2014
Av Marcelle Gaune-Escard, Geir Martin Haarberg, France) Gaune-Escard, Marcelle (Ecole Polytechnique, CNRS, Norway) Haarberg, Geir Martin (Norwegian University of Science and Technology
3 439 kr
Produktinformation
- Utgivningsdatum2014-06-13
- Mått198 x 254 x 33 mm
- Vikt1 229 g
- FormatInbunden
- SpråkEngelska
- Antal sidor632
- FörlagJohn Wiley & Sons Inc
- ISBN9781118448731
Tillhör följande kategorier
Marcelle Gaune-Escard is Research Director at Ecole Polytechnique, CNRS, Marseille, France. Most of her scientific activities focus on the multi-technique physicochemical, structural characterization and modeling of lanthanide halides melts. She has contributed over 250 journal papers, and over 300 conference presentations, and been involved in Chairing and organising numerous International Molten Salt Conferences. She is well-known for editing and publishing her own newsletter, Molten Salts & Ionic Liquids (since 1976, distribution 600, 24 countries, quarterly; Web edition since 1996).In 2004 Marcelle was awarded the Max Bredig Award in Molten Salt Chemistry, granted by the Electrochemical Society (USA) for the first time to a French female scientist.Geir Martin Haarberg is a Professor at the Materials Science and Engineering department at Norwegian University of Science and Technology, Trondheim, Norway since 2000. He has authored around 150 publications, including articles published in international journals, and conference proceedings (71).
- List of Contributors xxiiiForeword xxixPreface xxxi1 ALUMINIUM ELECTROLYSIS 11.1 Formation of CO2 and CO on Carbon Anodes in Molten Salts 3J. Thonstad and E. Sandnes1.2 Interaction of Carbon with Molten Salts 9Derek Fray1.3 Anode Processes on Carbon in Chloride Melts with Dissolved Oxides 17E. Sandnes, G. M. Haarberg, A. M. Martinez, K. S. Osen and R. Tunold1.4 Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low EnergyConsumption 27Ioan Galasiu and Rodica Galasiu1.5 Influence of the Sulfur Content in the Carbon Anodes in Aluminum Electrolysis – aLaboratory Study 39S. Pietrzyk and J. Thonstad1.6 Aluminum Electrolysis in an Inert Anode Cell 53O. Tkacheva, J. Spangenberger, B. Davis, and J. Hryn1.7 Effect of Phosphorus Impurities on the Current Efficiency for Aluminium Deposition from Cryolite-Alumina Melts in a Laboratory Cell 71R. Meirbekova, G. Sævarsdottir, J. P. Armoo, and G. M. Haarberg1.8 Influence of LOI on Alumina Dissolution in Molten Aluminum Electrolyte 77Y. Yang, B. Gao, X. Hu, Z. Wang, and Z. Shi1.9 The Electrolytic Production of Al-Cu-Li Master Alloy by Molten Salts Electrolysis 85B. Gao, S. Wang, J. Qu, Z. Shi, X. Hu, and Z. Wang1.10 Transference Numbers in Na(K) Cryolite-Based Systems 95J. Hýveš, P. Fellner, and J. Thonstad1.11 125 years of the Hall Héroult Process – What Made It a Success? 103O.-A. Lorentsen2 NEW PROCESSES FOR ELECTROWINNING 1132.1 Ionic Conduction of Oxygen and Calciothermic Reduction in Molten CaO-CaCl2 115R. O. Suzuki, D. Yamada, S. Osaki, R. F. Descallar-Arriesgado, and T. Kikuchi2.2 Effects of Temperature and Boron Concentration of a Boron-Doped Diamond (BDD) Electrode on NF3 Current Efficiency, and Stability of BDD Electrode in Molten NH4F⋅2HF 123A. Tasaka, Y. Iida, T. Shiono, M. Uno, Y. Nishiki, T. Furuta, M. Saito, and M. Inaba2.3 Nanoparticle Size Control Using a Rotating Disk Anode for Plasma-Induced Cathodic Discharge Electrolysis 133M. Tokushige, T. Nishikiori, and Y. Ito2.4 Cathodic Phenomena in Li Electrolysis in LiCl-KCl Melt 143T. Takenaka, T. Morishige, and M. Umehara3 MODELING AND THERMODYNAMICS 149 3.1 Ionic Conductivity and Molecular Structure of a Molten xZnBr2-(1−x)ABr (A = Li, Na, K) System 151T. Ohkubo, T. Tahara, K. Takahashi, and Y. Iwadate3.2 Molten Salts: from First Principles to Material Properties 159M. Salanne, P. A. Madden, and C. Simon3.3 Different Phases of Fluorido-Tantalates 163M. Boca, B. Kubýková, F. Šimko, M. Gembicky, J. Moncol, and K. Jomová3.4 Molecular Dynamics Simulation of SiO2 and SiO2-CaO Mixtures 171A. Jacob, A. Gray-Weale, and P. J. Masset3.5 Thermodynamic Investigation of the BaF2-LiF-NdF3 System 181M. Berkani and M. Gaune-Escard3.6 The Stable Complex Species in Melts of Alkali Metal Halides: Quantum-ChemicalApproach 193V. G. Kremenetsky, O. V. Kremenetskaya, and S. A. Kuznetsov3.7 Molecular and Ionic Species in Vapor over Molten Ytterbium Bromides 203M. F. Butman, D. N. Sergeev, V. B. Motalov, L. S. Kudin, L. Rycerz,and M. Gaune-Escard3.8 Lithium Hydride Solubility in Molten Chlorides 213P. J. Masset4 HIGH-TEMPERATURE EXPERIMENTAL TECHNIQUES 2194.1 In Situ Experimental Approach of Speciation in Molten Fluorides: A Combination of NMR, EXAFS, and Molecular Dynamics 221C. Bessada, O. Pauvert, L. Maksoud, D. Zanghi, V. Sarou-Kanian, M. Gobet, A. L. Rollet, A. Rakhmatullin, M. Salanne, C. Simon, D. Thiaudiere, and H. Matsuura4.2 NMR Study of Melts in the System Na3AlF6-Al2O3-AlPO4 229A. Rakhmatullin, M. Keppert, G. M. Haarberg, F. Šimko, and C. Bessada4.3 Structure and Dynamics of Alkali and Alkaline Earth Molten Fluorides by High-Temperature NMR and Molecular Dynamics 235G. Moussaed, V. Sarou-Kanian, M. Gobet, M. Salanne, C. Simon, A.-L. Rollet and C. Bessada4.4 Speciation of Niobium in Chloride Melts: An Electronic Absorption Spectroscopic Study 243I. B. Polovov, N. P. Brevnova, V. A. Volkovich, M. V. Chernyshov, B. D. Vasin, and O. I. Rebrin4.5 Electrode Processes in Vanadium-Containing Chloride Melts 257I. B. Polovov, M. E. Tray, M. V. Chernyshov, V. A. Volkovich, B. D. Vasin, and O. I. Rebrin4.6 Electrodeposition of Lead from Chloride Melts 283G. M. Haarberg, L.-E. Owe, B. Qin, J. Wang, and R. Tunold4.7 Electrodeposition of Ti from K2TiF6 in NaCl-KCl-NaF Melts 287C.A.C. Sequeira4.8 Effect of Electrolysis Parameters on the Coating Composition and Properties during Electrodeposition of Tungsten Carbides and Zirconium Diborides 295V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard4.9 Galvanic Coatings of Molybdenum and Tungsten Carbides from Oxide Melts: Electrodeposition and Initial Stages of Nucleation 303V. Malyshev, D. Shakhnin, A. Gab, and M. Gaune-Escard4.10 Electrolytic Production of Matrix Coated Fibres for Titanium Matrix Composites 319J. G. Gussone and J. M. Hausmann4.11 Electrochemical Synthesis of Double Molybdenum Carbides 329V.S. Dolmatov, S.A. Kuznetsov, E.V. Rebrov, and J.C. Schouten5 ELECTROCHEMISTRY IN IONIC LIQUIDS 3395.1 Electrodeposition of Aluminium from Ionic Liquids 341O.B. Babushkina, E.O. Lomako, J. Wehr, and O. Rohr5.2 Electrolytic Synthesis of (CF3)3N from a Room Temperature Molten Salt of (CH3)3N⋅mHF with BDD Electrode 351A. Tasaka, K. Ikeda, N. Osawa, M. Saito, M. Uno, Y. Nishki, T. Furuta, and M. Inaba5.3 Electrodeposition of Reactive Elements from Ionic Liquids 359A. Bund, A. Ispas, and S. Ivanov5.4 Electrodeposition of Magnesium in Ionic Liquid at 150-200 CB. Gao, T. Nohira, R. Hagiwara, and Z. Wang5.5 Room-Temperature Ionic Liquid-Based SEM/EDX Techniques for Biological Specimens and in situ Electrode Reaction Observation 373T. Tsuda, E. Mochizuki, S. Kishida, N. Nemoto, Y. Ishigaki, and S. Kuwabata6 NUCLEAR ENERGY 16.1 New Routes for the Production of Reactor Grade Zirconium 391Y. Xiao, A. van Sandwijk, Y. Yang, and V. Laging6.2 NMR and EXAFS Investigations of Lanthanum Fluoride Solubility in Molten LiF-ZrF4-LaF3 Mixture: Application in Molten Salts Reactor 403L. Maksoud, M. Gobet, D. Zanghi, H. Matsuura, M. Numakura, O. Pauvert, and C.Bessada6.3 Actinides Oxidative Back-Extraction from Liquid Aluminium, in Molten Chloride Media 411E. Mendes, O. Conocar, A. Laplace, N. Douyère, J. Lacquement, and M. Miguirditchian6.4 Formation of Uranium Fluoride Complex by Addition of Fluoride Ion to Molten NaCl-CsCl Melts 421A. Uehara, O. Shirai, T. Fujii, T. Nagai, N. Sato, and H. Yamana6.5 Corrosion of Austenitic Stainless Steels in Chloride Melts 427A. V. Abramov, I. B. Polovov, V. A. Volkovich, and O. I. Rebrin6.6 Pulsed Neutron Diffraction Study of Molten CsCl-NaCl-YCl3: Approaches from Fundamentals to Pyrochemical Reprocessing 449Y. Iwadate, T. Ohkubo, T. Michii, H. Matsuura, A. Kajinami, K. Takase, N. Ohtori, N. Umesaki, R. Fujita, K. Mizuguchi, H. Kofuji, M. Myochin, M. Misawa, T. Fukunaga, and K. Itoh6.7 Local Structural Analyses of Molten Thorium Fluoride in Mono- and Divalent Cationic Fluorides 459M. Numakura, N. Sato, C. Bessada, A. Nezu, H. Akatsuka, and H. Matsuura6.8 Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts 467M. Straka , F. Lis´y, and L. Szatmáry6.9 Quantitative Analysis of Lanthanides in Molten Chloride by Absorption Spectrophotometry 475T. Uda, T. Fujii, K. Fukasawa, A. Uehara, K. Kinoshita, T. Koyama and H. Yamana6.10 Formation of Rare Earth Phosphates in NaCl-2CsCl-Based Melts 481V. A. Volkovich, A. B. Ivanov, S. M. Yakimov, I. B. Polovov, B. D. Vasin, A. V. Chukin, A. K. Shtolts, and T. R. Griffiths6.11 A Novel Method for Trapping and Studying Volatile Molybdenum(V) in Alkali Chloride Melts: Implications for Treating Spent Nuclear Fuel 489V. A. Volkovich, I. B. Polovov, R. V. Kamalov, B. D. Vasin, and T. R. Griffiths6.12 Electrochemical Measurement of Diffusion Coefficient of U in Liquid Cd 499T. Murakami, M. Kurata, Y. Sakamura, T. Koyama, N. Akiyama, S. Kitawaki, A. Nakayoshi, and M. Fukushima6.13 Reduction of Uranyl(VI) Species in Alkali Chloride Melts 507V. A. Volkovich, D. E. Aleksandrov, D. S. Maltsev, B. D. Vasin, I. B. Polovov, and T. R. Griffiths7 ENERGY TECHNOLOGY 5217.1 Molten Salt Electrochemical Processes Directed Toward a Low Carbon Society 523Yasuhiko Ito7.2 Theoretical and Experimental Approach to Improve the Li2CO3-K2CO3 Eutectic Properties in MCFC Devices 535V. Lair, V. Albin, A. Ringuedé, and M. Cassir7.3 Conductive Property of Molten Carbonate/Ceria-Based Oxide (Ce0.9Gd0.1O1.95) for Hybrid Electrolyte 543M. Mizuhata, T. Ohashi, and S. Deki7.4 Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications 551T. Bauer, D. Laing, and R. Tamme7.5 Rechargeable Alkaline Metal Batteries of Amide Salt Electrolytes Melting at Low to Middle Temperatures 563R. Hagiwara, T. Nohira, K. Numata, T. Koketsu, T. Yamamoto, T. Fujimori, T. Ishibashi,A. Fukunaga, S. Sakai, K. Nitta, and S. Inazawa7.6 Electrochemistry of Anodic Reaction in Molten Salt Containing LiOH for Lithium–Hydrogen Energy Cycle 571Y. Sato, O. Takeda, M. Li, and M. Hoshi7.7 Electrorefining of Silicon by the Three-Layer Principle in a CaF2-Based Electrolyte 577E. Olsen, S. Rolseth, and J. Thonstad7.8 Electrochemical Behaviour of Light Lanthanides in Molten Chlorides with Fluorides 585Y. Shimohara, A. Nezu, M. Numakura, H. Akatsuka, and H. Matsuura7.9 Using Molten Fluoride Melts for Silicon Electrorefining 597P. Taxil, L. Massot, A.-L. Bieber, M. Gibilaro, L. Cassayre, and P. ChamelotIndex 605