Moduli of Double EPW-Sextics

Häftad, Engelska, 2016

Av Kieran G. O'Grady

1 389 kr

Tillfälligt slut

The author studies the GIT quotient of the symplectic grassmannian parametrizing lagrangian subspaces of $\bigwedge^3{\mathbb C}^6$ modulo the natural action of $\mathrm{SL}_6$, call it $\mathfrak{M}$. This is a compactification of the moduli space of smooth double EPW-sextics and hence birational to the moduli space of HK $4$-folds of Type $K3^{[2]}$ polarized by a divisor of square $2$ for the Beauville-Bogomolov quadratic form. The author will determine the stable points. His work bears a strong analogy with the work of Voisin, Laza and Looijenga on moduli and periods of cubic $4$-folds.

Produktinformation

  • Utgivningsdatum2016-03-01
  • Mått178 x 254 x undefined mm
  • Vikt274 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • FörlagAmerican Mathematical Society
  • ISBN9781470416966