Modern Sensors Handbook
Inbunden, Engelska, 2007
5 139 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Modern sensors working on new principles and/or using new materials and technologies are more precise, faster, smaller, use less power and are cheaper. Given these advantages, it is vitally important for system developers, system integrators and decision makers to be familiar with the principles and properties of the new sensor types in order to make a qualified decision about which sensor type to use in which system and what behavior may be expected. This type of information is very difficult to acquire from existing sources, a situation this book aims to address by providing detailed coverage on this topic. In keeping with its practical theme, the discussion concentrates on sensor types used or having potential to be used in industrial applications.
Produktinformation
- Utgivningsdatum2007-05-09
- Mått165 x 240 x 35 mm
- Vikt930 g
- FormatInbunden
- SpråkEngelska
- Antal sidor544
- FörlagISTE Ltd and John Wiley & Sons Inc
- ISBN9781905209668
Tillhör följande kategorier
Pavel Ripka is a Professor in the Department of Measurement, Faculty of Electrical Engineering, Czech Technical University, Prague, lecturing in measurements, engineering magnetism and sensors. Alois Tipek is a Postdoctoral Fellow and Project Manager at Tyndall (formerly NMRC), Cork, Ireland.
- Chapter 1. Pressure Sensors 1André MIGEON and Anne-Elisabeth LENEL1.1. Introduction 11.2. Pressure 21.2.1. Pressure as a physical quantity 21.2.2. Absolute, relative and differential sensors 31.2.3. Fluid physical properties 51.3. Pressure ranges 61.3.1. Vacuum and ultra-vacuum 61.3.2. Middle range pressure 81.3.3. High pressure 101.4. Main physical principles 101.4.1. The sensing device 111.4.2. Sensors with elastic element 131.4.3. Vacuum sensors 411.5. Calibration: pressure standards 431.5.1. Low pressure standard 431.5.2. High pressure standard 431.6. Choosing a pressure sensor 451.7. References 451.8. Other pressure sensor manufacturers 461.9. Bibliography 46Chapter 2. Optical Sensors 49Stanislav AO and Jan FISCHER2.1. Optical waveguides and fibers 492.2. Light sources and detectors 512.2.1. Light sources 512.2.2. Light detectors 542.3. Sensors of position and movement 622.3.1. Position sensors using the principle of triangulation 622.3.2. Incremental sensors of position or displacement 632.3.3. Photoelectric switches 662.4. Optical sensors of dimensions 712.4.1. Dimensional gauge with scanned beam 712.5. Optical sensors of pressure and force 732.5.1. Pressure sensor using the optical resonator 732.6. Optical fiber sensors 742.6.1. Introduction and classification of sensors with optical fibers 742.6.2. Optical fiber sensors with amplitude modulation 752.6.3. Sensor with wavelength modulation 772.6.4. Optical sensors with phase modulation 782.6.5. Perspective of optical fiber sensors 782.7. Optical chemical sensors 782.7.1. Introduction 782.7.2. Chemical sensors based on the absorbency measurement 792.7.3. Turbidity sensors 802.8. Bibliography 812.8.1. Books 812.8.2. Physical background – websites 82Chapter 3. Flow Sensors 83R. MEYLAERS, F. PEETERS, M. PEETERMANS and L. INDESTEEGE3.1. Introduction 833.1.1. Volume flow and mass flow 833.1.2. Influences on the flow 853.1.3. Bernoulli equation 863.2. Flow measurements based on the principle of difference in pressure 883.2.1. The Pitot and Prandtl tube 893.2.2. The orifice plate 933.2.3. The flow nozzle 983.2.4. The Venturi tube 993.2.5. The Dall tube 993.2.6. General guidelines for a correct reading 1003.3. Flow measurements based on variable passage 1013.3.1. The float flow meter (rotameter) 1013.3.2. Target flow meter 1033.4. Turbine flow meter 1043.4.1. Principle 1043.4.2. Practical installation 1063.4.3. Characteristics 1073.5. The mechanical flow meter (positive displacement) 1083.5.1. Principle 1083.5.2. Characteristics 1103.6. Magnetic flow meter 1103.6.1. Principle 1103.6.2. Construction of the measuring instrument 1123.6.3. Practical installation 1133.6.4. Characteristics 1153.7. The vortex flow meter 1163.7.1. Principle 1163.7.2. Construction of the vortex flow meter 1173.7.3. Practical installation 1203.7.4. Characteristics 1213.8. Ultrasonic flow meter 1223.8.1. Principle 1223.8.2. Practical installation 1253.8.3. Characteristics 1253.9. Coriolis mass flow meters 1263.9.1. Principle 1263.9.2. Applications 1283.9.3. Practical installation 1293.9.4. Characteristics 1293.10. Flow measurements for solid substances 1293.10.1. Flow measurement of solids by means of an impact plate 1303.10.2. Flow measurement of solids based on the weighing method 1323.10.3. Capacitive flow measurement of solid substances 1333.10.4. Detection of solid substances using microwaves 1343.11. Flow measurement for open channels with weirs 1353.12. Choice and comparison of flow measurements 1373.13. Bibliography 1373.14. Website references 137Chapter 4. Intelligent Sensors and Sensor Networks 141Jirí NOVAK4.1. Introduction 1414.2. Intelligent sensors 1424.2.1. Sensors and transducers 1434.2.2. Signal conditioning (SC) 1444.2.3. A/D conversion 1464.2.4. Data processing 1474.2.5. Human-machine interface 1484.2.6. Communication interface 1484.2.7. Industrial examples 1494.3. Sensor networks and interfaces 1514.3.1. Centralized and distributed industrial systems 1524.3.2. Hierarchical structure of distributed communication 1544.3.3. Data communication basics 1554.3.4. Simple sensor interfaces 1664.3.5. Sensor networks 1714.3.6. Wireless sensor networks 190Chapter 5. Accelerometers and Inclinometers 193André MIGEON and Anne-Elisabeth LENEL5.1. Introduction 1935.2. Acceleration 1945.2.1. Physical quantity 1945.2.2. Application to velocity and position measurements 1985.2.3. Application to position measurements 1995.2.4. The inclinometers 2005.3. Application ranges 2015.3.1. Static and low-frequency acceleration. 2015.3.2. Vibrations 2025.3.3. Shocks 2035.3.4. Inclination 2045.4. Main models of accelerometers 2055.4.1. Piezoelectric accelerometers 2065.4.2. Piezoresistive accelerometers 2135.4.3. Accelerometers with resonators 2195.4.4. Capacitive accelerometers 2215.4.5. Potentiometric accelerometers 2245.4.6. Optical detection accelerometers 2265.4.7. Magnetic detection accelerometers 2275.4.8. Servo accelerometers with controlled displacement 2295.5. The signal processing associated with accelerometers 2315.6. Manufacturing process 2325.6.1. The monolithic processes 2325.6.2. Hybrid process 2345.6.3. Packaging 2345.7. The calibrations 2355.7.1. Inclinometers and accelerometers with range lower than 1 g 2355.7.2. Acceleration range higher than 1 g 2355.8. Examples of accelerometers and inclinometers 2365.9. List of manufacturers of accelerometers 2425.10. References 2435.11. Bibliography 244Chapter 6. Chemical Sensors and Biosensors 245Gillian McMAHON6.1. Introduction 2456.2. What is involved in developing a sensor? 2496.2.1. Molecular recognition 2506.2.2. Immobilization of host molecules 2526.2.3. Transduction of signal 2536.3. Electrochemical sensors 2536.3.1. Amperometric and voltammetric sensors 2546.3.2. Potentiometric sensors 2586.3.3. Resistance, conductance and impedance sensors 2636.4. Optical sensors 2656.4.1. Methods of detection 2656.4.2. Reagent-mediated sensors 2686.5. Acoustic (mass) sensors 2696.5.1. Quartz crystal microbalance sensors 2706.5.2. Sensor arrays 2726.6. Biosensors 2746.6.1. Affinity biosensors 2756.6.2. Catalytic biosensors 2856.7. Future trends 2906.7.1. Microanalytical instruments as sensors 2916.7.2. Autonomous sensing devices 2986.7.3. Sub-micron dimensioned sensors 2986.8. Conclusions 3016.9. References 302Chapter 7. Level, Position and Distance 305Stanislav DADO and G. HARTUNG7.1. Introduction 3057.1.1. Classification of LPD sensors 3057.2. Resistive LPD sensors 3067.2.1. Potentiometer 3067.2.2. Angular position measurement 3077.2.3. Draw wire sensors 3087.2.4. Inclination detectors 3087.2.5. Application of potentiometers 3097.3. Inductive LPD sensors 3097.3.1. Linear variable differential transformers 3107.3.2. Inductosyns 3117.3.3. Resolvers 3127.3.4. Selsyn 3137.3.5. Inductive sensors of angular velocity 3137.3.6. Eddy current distance sensors 3147.4. Magnetic LPD sensors 3157.4.1. Magnetic field sensors 3157.4.2. Reed switches 3167.4.3. Hall sensors 3167.4.4. Semiconductor magnetoresistors 3177.4.5. Wiegand wire 3187.4.6. Magnetostrictive sensor 3187.5. Capacitive LPD sensors 3197.5.1. Introduction 3197.5.2. Signal conditioning circuits for capacitive sensors 3207.5.3. Using capacitive sensors 3217.6. Optical LPD sensors 3237.6.1. Introduction 3237.6.2. Photo-electric switches (PES) 3237.6.3. LPD sensors based on triangulation 3277.6.4. Optical encoders 3287.6.5. Interferometry 3307.6.6. Optical LPD sensors based on travel time (time-of-fly) measurement 3317.6.7. Image-based measurement-machine vision, videometry 3327.7. Ultrasonic sensors 3337.7.1. Introduction 3337.7.2. Travel time principle 3347.7.3. Doppler effect 3347.8. Microwave distance sensors (radar) 3357.8.1. Introduction 3357.8.2. Microwave sensors based on FMCW 3367.8.3. Properties of microwave sensors 3377.9 Level measurement 3377.9.1. Introduction 3377.9.2. Detection limits 3387.9.3. Continuous level measurement 3397.10. Conclusions and trends 3437.11. References 3437.12. Online references 344Chapter 8. Temperature Sensors 347F. PEETERS, M. PEETERMANS and L. INDESTEEGE8.1. Introduction 3478.2. Thermal measuring techniques 3488.2.1. Heat and temperature 3488.2.2. Static and dynamic readings 3488.2.3. Time constant and response time 3498.2.4. Thermal units 3498.2.5. Thermal equilibrium 3508.2.6. Temperature measuring options 3548.2.7. Quality of a measurement 3558.3. Physical or direct temperature measurement 3558.3.1. Glass thermometer 3558.3.2. Liquid filled expansion thermometers 3568.3.3. Gas filled expansion thermometer or pressure thermometer detector 3588.3.4. Vapor-pressure systems 3598.3.5. Bimetallic thermometer 3618.4. Thermoelectric measurements (thermocouples) 3638.4.1. Measuring principle: thermoelectricity 3638.4.2. Thermoelectric laws 3648.4.3. Practical temperature measurement with thermocouples 3678.4.4. Technological realizations of thermocouples 3718.4.5. Applications 3748.4.6. Parallel and series connections of thermocouples 3758.5. Resistance temperature detectors (RTDs) 3778.5.1. Principle 3778.5.2. Used materials and construction 3798.5.3. Applications 3808.6. Thermistors 3828.6.1. Principle 3828.6.2. Thermistor technology 3838.6.3. Application 3848.7. Monolithic temperature sensors (IC sensor) 3848.8. Pyrometers 3858.8.1. Introduction 3858.8.2. Basic principles of pyrometry 3868.8.3. Measurement possibilities for pyrometers 3878.8.4. Implementation and construction of pyrometers 3898.9. References 3918.10 Bibliography 391Chapter 9. Solid State Gyroscopes and Navigation 395André MIGEON and Anne-Elisabeth LENEL9.1. Introduction 3959.2. The angular rate 3969.2.1. Definition of rate gyro 3999.2.2. Use of rate sensors 4019.3. Different ranges of rate gyro 4019.3.1. Control of trajectory 4029.3.2. Piloting and stabilization 4029.3.3. Guidance 4029.3.4. Navigation 4029.4. Main models of rate gyro 4049.4.1. Rotary gyrometers 4049.4.2. Vibrating gyrometers 4049.4.3. Optical gyrometers 4209.4.4. Other original principles 4269.5. Calibration of rate sensors 4269.6. General features of the gyrometers 4279.7. The main manufacturers 4299.8. References 4309.9. Bibliography 431Chapter 10. Magnetic Sensors 433S. RIPKA and Pavel RIPKA10.1. Introduction 43310.2. Hall sensors 43410.2.1. The Hall effect 43510.2.2. New types of Hall sensors 43710.3. AMR sensors 43910.3.1. Operating principles of the AMR effect 43910.3.2. Measuring configuration of the AMR 44310.3.3. Flipping 44410.3.4. Magnetic feedback 44610.4. GMR sensors 44710.4.1. Physical mechanism 45010.4.2. Spin valves 45010.4.3. Sandwiches and multilayers 45310.4.4. SDT sensors 45410.4.5. Linear GMR sensors 45410.4.6. Rotational GMR sensors 45610.5. Induction and fluxgate sensors 45710.5.1. Induction coil sensors 45810.5.2. Fluxgate sensors 45910.6. Other magnetic field sensors 46310.6.1. Resonance sensors 46310.7. Magnetic position sensors 46510.7.1. Sensors using permanent magnets 46510.7.2. Eddy current sensors 46610.7.3. Linear and rotational transformers 46710.7.4. Magnetostrictive position sensors 46910.7.5. Proximity switches 46910.8. Contactless current sensors 47110.8.1. Hall current sensors 47210.8.2. Magnetoresistive current sensors 47210.8.3. AC and DC transformers 47210.8.4. Current clamps 47210.9. References 473Chapter 11. New Technologies and Materials 477A. TIPEK, P. RIPKA and E. HULICIUS, with contributions from A. HOSPODKOVÁ and P. NEU?IL11.1. Introduction: MEMS 47711.2. Materials 48011.2.1. Passive materials 48011.2.2. Active materials 48111.2.3. Silicon 48111.2.4. Other semiconductors 48311.2.5. Plastics 48411.2.6. Metals 48611.2.7. Ceramics 48611.2.8. Glass 48611.3. Silicon planar IC technology 48711.3.1. The substrate: crystal growth 48811.3.2. Diffusion and ion implantation 48811.3.3. Oxidation 48911.3.4. Lithography and etching 48911.3.5. Deposition of materials 49011.3.6. Metallization and wire bonding 49011.3.7. Passivation and encapsulation 49111.4. Deposition technologies 49111.4.1. Introduction 49111.4.2. Chemical reactions 49211.4.3. Physical reactions 49511.4.4. Epitaxial techniques for semiconductor device preparation 49811.5. Etching processes 50011.5.1. Wet etching/micromachining 50111.5.2. Dry etching/micromachining 50211.6. 3-D microfabrication techniques 50311.6.1. LIGA 50411.6.2. Laser assisted etching (LAE) 50411.6.3. Photo-forming and stereo lithography 50511.6.4. Microelectrodischarging (MEDM and WEDG) 50611.6.5. Microdrip fabrication 50711.6.6. Manufacturing using scanning probe microscopes and electron microscopes 50811.6.7. Handling of micro particles with laser tweezers 50811.6.8. Atomic manipulation 50911.7. References 510List of Authors 513Index 515