Modern Nonconvex Nondifferentiable Optimization

Inbunden, Engelska, 2022

Av Ying Cui, Jong-Shi Pang

1 749 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today's complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.

Produktinformation

  • Utgivningsdatum2022-02-28
  • Vikt1 752 g
  • FormatInbunden
  • SpråkEngelska
  • SerieMOS-SIAM Series on Optimization
  • Antal sidor774
  • FörlagSociety for Industrial & Applied Mathematics,U.S.
  • ISBN9781611976731

Tillhör följande kategorier