Modern Glass Characterization
Inbunden, Engelska, 2015
2 539 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The book consists of a series of edited chapters, each written by an expert in the field and focusing on a particular characterization technique as applied to glass. The book covers a variety of techniques ranging from the very common (like Raman and FTIR) to the most recent (and less well known) ones, like SEM for structural analysis and photoelastic measurements. The level of the chapters make it suitable for researchers and for graduate students about to start their research work. It will also: discuss the technique itself, background, nuances when it comes to looking at glassy materials, interpretation of results, case studies, and recent and near-future innovationsFill a widening gap in modern techniques for glass characterizationProvide much needed updates on the multiple essential characterization techniques
Produktinformation
- Utgivningsdatum2015-11-06
- Mått160 x 236 x 31 mm
- Vikt794 g
- FormatInbunden
- SpråkEngelska
- Antal sidor464
- FörlagJohn Wiley & Sons Inc
- ISBN9781118230862
Tillhör följande kategorier
Mario Affatigato, PhD,is currently Professor of Physics at Coe College, Iowa. Prof. Affatigato's research interests include optical properties of glasses and the relationship between those properties and the structure of the glass. He was awarded the Presidential Early Career Award for Scientists and Engineers in 1999, and the Faculty Member Prize for Research in an Undergraduate Institution in 2013 by the American Physical Society. He has published over 80 papers in refereed journals.
- Preface xiii List of Contributors xv1 DENSITY, THERMAL PROPERTIES, AND THE GLASS TRANSITION TEMPERATURE OF GLASSES 1Steve FellerPart I: Introduction to Physical Properties and Their Uses 1Part II: Density 21.1 Density: Experimental Background and Theory 21.1.1 Overview 21.1.2 Experimental Methods and Theory 31.1.3 Instrumentation Used for Determining Density 71.1.4 Analysis of Data, Extraction of Useful Information, and Other Ways to Express Density 81.1.5 Case Studies from Some Glass Systems 131.1.6 Conclusion to Density Measurements 19Part III: Thermal Effects with a Focus on the Glass Transition Temperature 201.2 OVERVIEW 201.3 EXPERIMENTAL METHODS AND THEORY 201.3.2 Differential Thermal Analysis 221.4 INSTRUMENTATION USED FOR DETERMINING Tg AND RELATED THERMAL EVENTS 231.4.1 DSCs 231.4.2 Differential Thermal Analysis 231.5 ANALYSIS OF DATA AND EXTRACTION OF USEFUL INFORMATION 251.6 CASE STUDIES FROM GLASS SYSTEMS 261.6.1 The Glass Transition Temperatures of Barium Borosilicate Glasses [18] 261.6.2 Stability Parameters in Lithium Borate Glasses [18] 271.7 CONCLUSION TO THERMAL PROPERTIES 302 INFRARED SPECTROSCOPY OF GLASSES 32E.I. Kamitsos2.1 INTRODUCTION 322.2 BACKGROUND AND THEORY 342.2.1 Refractive Index and Dielectric Function 342.2.2 Reflectance Spectroscopy of Bulk Materials 362.2.3 Infrared Spectra of Thin Films 422.3 INSTRUMENTATION 442.4 ANALYSIS OF INFRARED DATA 482.4.1 Bulk Glasses 482.4.2 Thin Films of Amorphous Materials 522.5 CASE STUDIES 542.5.1 Bulk Glasses 542.5.2 Glass Thin Films 632.6 CONCLUSIONS 683 RAMAN SPECTROSCOPY OF GLASSES 74Rui M. Almeida and Luis F. Santos3.1 INTRODUCTION 743.2 BACKGROUND 763.2.1 Theory 763.2.2 Selection Rules 783.2.3 Depolarization of Raman Lines 793.3 INSTRUMENTATION AND DATA ANALYSIS 803.3.1 Light Source 813.3.2 Sample Compartment 823.3.3 Spectrometer 823.3.4 Detector 833.3.5 Micro-Raman Spectrometers 843.3.6 Resolution 853.3.7 Data Analysis 863.4 CASE STUDIES 873.4.1 Structural Effects of Alkali Incorporation in Silicate Glasses 873.4.2 Phase Separation Mechanisms in Transition Metal Phosphate Glasses 923.4.3 Raman Study of Niobium Germanosilicate Glasses And Glass-Ceramics 963.4.4 Raman Spectroscopy of Chalcogenide Glasses 993.5 CONCLUSIONS 1034 BRILLOUIN LIGHT SCATTERING 107John Kieffer4.1 INTRODUCTION 1074.2 BACKGROUND AND THEORY 1104.3 INSTRUMENTATION 1174.4 DATA ANALYSIS AND INFORMATION CONTENT 1264.5 EXAMPLES OF CASE STUDIES 1334.5.1 Room-Temperature Glass 1334.5.2 Temperature Dependence, Glass Transition, and Visco-Elasticity 1374.5.3 Spatially Confined Systems (e.g., Thin Films) 1464.5.4 Systems Under Pressure 1494.5.5 Mechanically Fragile Systems, Soft Matter, and Gels 1514.6 SUMMARY 1545 NEUTRON DIFFRACTION TECHNIQUES FOR STRUCTURAL STUDIES OF GLASSES 158Alex C. Hannon5.1 INTRODUCTION 1585.2 INSTRUMENTATION 1595.2.1 The Neutron 1595.2.2 The Interactions between a Neutron and a Sample 1605.2.3 Neutron Sources 1615.2.4 Neutron Diffractometers 1645.3 THEORETICAL ASPECTS OF NEUTRON DIFFRACTION ON GLASSES 1695.3.1 The Static Approximation 1695.3.2 Scattering from a Single Nucleus 1695.3.3 Scattering from an Assembly of Nuclei 1705.3.4 Isotropic Samples 1715.3.5 Coherent and Incoherent (Distinct and Self) Scattering 1715.3.6 Atomic Vibrations 1735.3.7 Real-space Correlation Functions 1805.4 THE APPLICATION OF NEUTRON DIFFRACTION TO STUDIES OF GLASS STRUCTURE 1865.4.1 Experimental Corrections 1865.4.2 Resolution 1905.4.3 Peak Fitting and Integration 1945.4.4 Normalization of Data 1985.4.5 Scattering at low Q 2005.4.6 Sample-Related Difficulties 2035.4.7 Partial Correlation Functions 2095.4.8 Interpretation of Results 2185.4.9 Modeling 2265.4.10 The PDF Method 2296 X-RAY DIFFRACTION FROM GLASS 241Christopher J. Benmore6.1 INTRODUCTION 2416.2 BACKGROUND/THEORY 2446.3 ANALYSIS OF DATA, EXTRACTION OF USEFUL INFORMATION 2496.4 INSTRUMENTATION 2556.5 CASE STUDIES 2586.5.1 SiO2 and Oxide Glasses 2586.5.2 Chalcogenide Glasses 2636.5.3 Amorphous Materials, Gels, Foams and Fibers 2646.6 CONCLUSIONS 2647 XAFS SPECTROSCOPY AND GLASS STRUCTURE 271Giuseppe Dalba and Francesco Rocca7.1 INTRODUCTION 2717.2 THE ORIGINS OF X-RAY ABSORPTION SPECTRA 2727.3 XAFS INSTRUMENTATION 2747.4 THE PHYSICAL MECHANISM OF XAFS 2787.5 EXAFS 2797.5.1 EXAFS Formula for Glasses 2827.6 XAFS DATA ANALYSIS 2847.6.1 Corrections for Instrumental Errors 2847.6.2 Pre-edge Background Subtraction 2847.6.3 Post-edge Background Subtraction 2857.6.4 Normalization 2867.6.5 Conversion to k-Space, Choice of Threshold Energy E0 and Weighting 2867.6.6 Transformation from k-Space to R-Space 2867.6.7 Fourier Filtering: Reverse Transformation: from R-Space to k-Space 2877.6.8 Log Amplitude Ratio and Phases Difference Method 2887.6.9 Fitting Procedure 2887.7 EXAFS ACCURACY AND LIMITATIONS 2897.8 XANES 2907.9 XAFS SPECTROSCOPY APPLIED TO GLASS STRUCTURE: SOME EXAMPLES 2917.9.1 Silicate Glasses 2927.9.2 Silica Glass 2947.9.3 Silica at High Temperature 2947.9.4 Silica and Germania Glasses under High Pressure 2977.9.5 Nanoparticles Embedded in Glasses 3007.9.6 Study of Ionic Conductivity in Superionic Conducting Glasses Doped with AgI 3077.10 SUMMARY AND CONCLUSIONS 3098 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY OF GLASSES 315Scott Kroeker8.1 INTRODUCTION 3158.2 THEORETICAL BACKGROUND 3168.2.1 Zeeman Effect 3168.2.2 Magnetic Shielding 3188.2.3 Quadrupolar Interaction 3198.2.4 Dipolar Interactions 3208.2.5 High Resolution Methodologies 3208.3 INSTRUMENTATION 3238.3.1 Magnet 3238.3.2 Probe 3258.3.3 Radiofrequency Components 3268.3.4 Computer Control 3268.3.5 Measurement Uncertainty 3278.4 DATA ANALYSIS AND STRUCTURAL INTERPRETATION 3298.4.1 Chemical Shift Assignments 3298.4.2 Information from Quadrupolar Effects 3308.4.3 Low-gamma Nuclei 3328.4.4 Paramagnetic Effects 3338.5 CASE STUDIES 3338.5.1 Borophosphate Glasses 3338.5.2 Aluminosilicate Glasses 3368.5.3 Borosilicate Glasses 3378.5.4 Modifier Cations in Alkali Borate Glasses 3408.6 CONCLUSIONS 3419 ADVANCED DIPOLAR SOLID STATE NMR SPECTROSCOPY OF GLASSES 345Hellmut Eckert9.1 INTRODUCTION 3459.2 THEORETICAL ASPECTS 3479.2.1 Direct Magnetic Dipole-Dipole Coupling 3489.2.2 Indirect Magnetic Dipole-Dipole Coupling 3499.3 HETERONUCLEAR EXPERIMENTS 3499.3.1 Spin Echo Double Resonance 3499.3.2 Rotational Echo Double Resonance 3509.3.3 Rotational Echo Adiabatic Passage Double Resonance 3539.3.4 Cross-polarization 3549.3.5 Connectivity Studies Based on the Detection of Indirect Spin-Spin Interactions 3589.3.6 Instrumental Considerations and Caveats. 3589.4 HOMONUCLEAR EXPERIMENTS 3609.4.1 Static Spin Echo Decay Spectroscopy 3609.4.2 Homonuclear Dipolar Recoupling Experiments 3629.4.3 Instrumental Considerations and Caveats 3699.5 CASE STUDIES 3709.5.1 Spatial Distributions of Mobile Ions in Alkali Silicate and Borate Glasses 3709.5.2 Connectivity Distribution in 70 SiO2-30 [(Al2 O3)x(P2O5)1-x] Glasses 3749.5.3 Speciations and Connectivity Distributions in Borophosphate and Thioborophosphate Glasses 38010 ATOM PROBE TOMOGRAPHY OF GLASSES 391Daniel Schreiber and Joseph V. Ryan10.1 INTRODUCTION 39110.2 BACKGROUND AND THEORY 39210.3 INSTRUMENTATION 39510.3.1 APT Specimen Preparation 39910.3.2 Experimental Procedure and Parameters 40110.3.3 Data Reconstruction 40310.4 ANALYSIS METHODS 40910.4.1 Estimating Error 41210.5 CASE STUDIES 41710.5.1 Composition 41810.5.2 Interfaces 42010.5.3 Conclusions 424Index 431