Microbial Bioreactors for Industrial Molecules
Inbunden, Engelska, 2023
Av Sudhir Pratap Singh, Santosh Kumar Upadhyay, India) Singh, Sudhir Pratap (Center of Innovative and Applied Bioprocessing, Mohali, India) Upadhyay, Santosh Kumar (Panjab University, Chandigarh
2 449 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Microbial Bioreactors for Industrial Molecules Harness the planet’s most numerous resources with this comprehensive guide Microorganisms constitute the invisible majority of all living creatures on Earth. They are found virtually everywhere on the planet, including in environments too extreme for any larger organisms to exist. They form a hugely significant resource whose potential value for human society cannot be overlooked. The creation of microorganism- based bioreactors for the industrial production of valuable biomolecules has the potential to revolutionize a range of industries and fields. Microbial Bioreactors for Industrial Molecules provides a comprehensive introduction to these bioresources. It covers all potential approaches to the use of microbial technology and the production of high-value biomolecules for the pharmaceutical, cosmetic, and agricultural industries, among others. The book’s rigorous detail and global, holistic approach to harnessing the power of the planetary microbiome make it an invaluable introduction to this growing area of research and production. Readers will also find: Detailed coverage of basic, applied, biosynthetic, and translational approaches to the use of microbial technologyDiscussion of industrially produced microbe-borne enzymes including invertase, lipase, keratinase, protease, and moreApproaches for using microbial bioreactors to generate biofuelsMicrobial Bioreactors for Industrial Molecules is essential for scientists and researchers in microbiology and biotechnology, as well as for professionals in the biotech industries and graduate students studying the applications of the life sciences.
Produktinformation
- Utgivningsdatum2023-07-13
- Mått178 x 254 x 36 mm
- Vikt680 g
- FormatInbunden
- SpråkEngelska
- Antal sidor512
- FörlagJohn Wiley & Sons Inc
- ISBN9781119874065
Tillhör följande kategorier
Sudhir P. Singh is a scientist working in biotechnology and synthetic biology at the Center of Innovative and Applied Bioprocessing, Mohali, India. His research focuses on the catalytic biosynthesis of functional biomolecules. Santosh Kumar Upadhyay is Assistant Professor in the Department of Botany, Panjab University, Chadigarh, India. His research focuses on the isolation and production of plant-based proteins for industry and defense.
- List of Contributors xvPreface xxii1 Microbial Bioreactors: An Introduction 1Ashish Kumar Singh, Santosh Kumar Upadhyay, and Sudhir P. Singh1.1 Microbial Bioresources 11.2 Microbial Bioresources for the Production of Enzymes 21.3 Microbial Bioresources for Therapeutic Application 31.4 Microbial Bioresources for Biogenesis 41.5 Microbial Fermentation 51.6 Microbial Biodegradation 61.7 Microbioresources for High- Value Metabolites 7Acknowledgments 8References 92 Microbial Bioresource for the Production of Marine Enzymes 17Lorena Pedraza- Segura, Karina Maldonado- Ruiz Esparza, and Ruth Pedroza- Islas2.1 Introduction 172.2 Prokaryotes 172.2.1 Amylases 192.2.2 Proteases 192.2.3 Bactericide 192.2.4 l- Asparaginase 192.2.5 Carbohydrases 202.3 Marine Archaea 202.4 Eukaryotes 232.4.1 Yeasts 232.4.2 Enzymes from Marine- Derived Fungi 24References 303 Lactic Acid Production Using Microbial Bioreactors 39Juliana Botelho Moreira, Ana Luiza Machado Terra, Whyara Karoline Almeida da Costa, Marciane Magnani, Michele Greque de Morais, and Jorge Alberto Vieira Costa3.1 Introduction 393.2 Microbial Lactic Acid Producers 403.2.1 Bacteria 403.2.2 Fungi and Yeast 413.2.3 Microalgae 413.3 Alternative Substrates for Lactic Acid Production 423.4 Fermentation Process Parameters 423.5 Mode Improvement of Lactic Acid and Reactor Configuration 433.6 Challenges 473.7 Conclusions 49Acknowledgments 50References 504 Advancement in the Research and Development of Synbiotic Products 55Anna María Polanía, Alexis García, and Liliana Londoño4.1 Introduction 554.2 Probiotics, Prebiotics, and Synbiotics 564.2.1 Probiotics 564.2.2 Requirements and Selection Criteria for Probiotic Strains 574.3 Prebiotics 574.3.1 Requirements and Selection Criteria for Prebiotic Strains 594.4 Synbiotics 604.4.1 Synbiotic Selection Criteria 614.4.2 Mechanism of Action of Synbiotics 614.5 Health Benefits from Synbiotics 634.6 Bioreactor Design for Synbiotic Production 654.7 Microencapsulation and Nanotechnology to Ensure Their Viability 674.8 Nanoparticles 684.9 Applications in Various Fields such as Dermatological Diseases, Animal Feed, and Functional Foods 684.9.1 Dermatological Diseases 684.9.2 Functional Foods 704.9.3 Animal Feed 714.10 Conclusions 72References 735 Microbial Asparaginase and Its Bioprocessing Significance 81Susana Calderón- Toledo, Amparo Iris Zavaleta, and Adalberto Pessoa- Junior5.1 Introduction 815.2 Classification of l- Asparaginase 825.3 Bioprocessing 825.3.1 Sources of microbial l- Asparaginase 825.3.2 Upstream Bioprocessing 835.3.3 Downstream Bioprocessing 875.3.3.1 Protein Concentration 875.3.3.2 l- Asparaginase Release 885.3.3.3 Chromatography 885.4 Scaled Up to Bioreactor 895.5 Characterization of l- Asparaginase 905.6 Applications of l- Asparaginase 925.6.1 Pharmaceutical Industry 925.6.2 Food Industry 925.7 Conclusions 93References 936 Bioreactor- Scale Strategy for Pectinase Production 103Javier Ulises Hernández- Beltrán, Carlos Alberto Acosta- Saldívar, Genesis Escobedo- Morales, Nagamani Balagurusamy, and Miriam Paulina Luévanos- Escareño6.1 Introduction 1036.2 Pectinase Classification and Origin Sources 1046.2.1 Pectinases 1046.2.2 Origin Source of Production of Microbial Pectinase 1066.3 Substrates Used for Pectinase Production 1076.4 Fermentation Strategies 1076.4.1 Solid- State Fermentation 1076.4.2 Submerged Fermentation 1136.5 Bioreactor- Scale Strategies 1166.6 Conclusions 121References 1247 Microbes as a Bio- Factory for Polyhydroxyalkanoate Biopolymer Production 131Daniel Tobías- Soria, Julio Montañez, Iván Salmerón, Alejandro Mendez- Zavala, James Winterburn, and Lourdes Morales- Oyervides7.1 Introduction 1317.2 Microbial Polyhydroxyalkanoates as a Novel Alternative to Substitute Petroleum- Derived Plastics 1327.3 Microbial PHAs Classification, Synthesis, and Producing Microorganisms 1337.3.1 PHAs Classification 1337.3.2 Biosynthetic Pathways for PHAs Production 1347.3.3 PHAs Producing Strains 1377.3.4 Bacteria as the Main Species for the PHA Production 1397.3.5 Algae as a Feasible Alternative for PHA Production 1407.4 Trends and Challenges in the PHAs Synthesis Process 1417.4.1 Upstream Processing Trends and Challenges 1427.4.2 Downstream Processing, Trends and Challenges 1447.5 Process Economics and Perspectives Toward Industrial Implementation 1457.6 Concluding Remarks 151References 1518 Microbial Production of Critical Enzymes of Lignolytic Functions 161M. Indira, S. Krupanidhi, K. Vidya Prabhakar, T. C. Venkateswarulu, and K. Abraham Peele8.1 Introduction 1618.2 Sources of Lignolytic Enzymes 1628.2.1 Plants 1648.2.2 Insects 1648.2.3 Bacteria 1658.2.4 Fungi 1658.2.5 Actinomycetes 1668.2.6 Extremophiles 1668.3 Lignolytic Enzymes 1678.3.1 Lignin Peroxidase (EC 1.11.1.14) 1678.3.2 Manganese Peroxidase (EC 1.11.1.13) 1688.3.3 Versatile Peroxidase (EC 1.11.1.16) 1688.3.4 Dye Decolorizing Peroxidases (DyPs) (EC 1.11.1.19) 1698.3.5 Laccases (EC 1.10.3.2) 1698.3.6 Feruloyl Esterase (EC.3.1.1.73) 1708.3.7 Aryl Alcohol Oxidase (EC 1.1.3.7) 1708.3.8 Pyranose- 2- Oxidase (EC 1.1.3.10) 1718.3.9 Vanillyl Alcohol Oxidase (EC 1.1.3.38) 1718.3.10 Quinone Reductase (EC 1.6.5.5) 1718.4 Microbial Production of Lignolytic Enzymes 1718.5 Mechanism of Action of Lignolytic Enzymes 1758.6 Conclusions 177Acknowledgments 177References 1789 Microbial Bioreactors for Biofuels 189Paulo Renato Souza de Oliveira, Allana Katiussya Silva Pereira, Iara Nobre Carmona, and Ananias Francisco Dias Júnior9.1 Introduction 1899.2 General Classification of Bioreactor 1909.3 Liquid- Phase Bioreactor 1909.3.1 Cell- Free 1909.3.1.1 Mechanically Stirred 1909.3.1.2 Pneumatically Stirred 1909.3.2 Immobilized Cell 1919.4 Reactors for Solid- State Cultures 1929.5 Bioreactor Operation Mode 1939.6 Biofuels 1949.6.1 Bioethanol 1949.6.2 Biodiesel 1969.6.3 Butanol 1979.6.4 Biogas and Methane 1989.6.5 Hydrogen 1999.6.6 Biohythane 2009.7 Considerations and Future Perspectives 201References 20110 Potential Microbial Bioresources for Functional Sugar Molecules 211Satya Narayan Patel, Sweety Sharma, Ashish Kumar Singh, and Sudhir P. Singh10.1 Introduction 21110.2 D- Allulose 21210.3 D- Tagatose 21510.4 Trehalose 21710.5 Turanose 21810.6 Trehalulose 22110.7 D- Allose 22210.8 D- Talose 22410.9 Conclusions 224Acknowledgment 225References 22511 Microbial Production of Bioactive Peptides 237Adriano Gennari, Fernanda Leonhardt, Graziela Barbosa Paludo, Daniel Neutzling Lehn, Gaby Renard, Giandra Volpato, and Claucia Fernanda Volken de Souza11.1 Introduction 23711.2 Microbial Production of Peptides with Antioxidant Activity 23811.3 Microbial Production of Peptides with Antimicrobial Activity 23911.4 Microbial Production of Peptides with Antihypertensive Activity 24011.5 Microbial Production of Peptides with Antidiabetic Activity 24211.6 Microbial Production of Peptides with Immunomodulatory Activities 24311.7 Microbial Production of Peptides with Antitumoral Activity 24311.8 Microbial Production of Peptides with Opioid Activity 24711.9 Microbial Production of Peptides with Antithrombotic Activity 24811.10 Production of Recombinant Peptides in Microbial Expression Systems 24911.11 Purification and Identification of Microbial Bioactive Peptides 25111.12 Conclusions and Perspectives 252References 25312 Trends in Microbial Sources of Oils, Fats, and Fatty Acids for Industrial Use 261Alaa Kareem Niamah, Deepak Kumar Verma, Shayma Thyab Gddoa Al- Sahlany, Soubhagya Tripathy, Smita Singh, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar12.1 Introduction 26112.2 Microbial Sources 26312.2.1 Microalgal Sources 26412.2.2 Bacterial Sources 26612.2.3 Fungal and Yeast Sources 26712.3 Application in Food and Health 26912.4 Opportunities and Prospective Future 27012.5 Conclusion 271References 27113 Microbial Bioreactors for Secondary Metabolite Production 275Luis V. Rodríguez- Durán, Mariela R. Michel, Alejandra Pichardo, and Pedro Aguilar- Zárate13.1 Introduction 27513.2 Design of Bioreactors 27613.3 Types of Bioreactors for Secondary Metabolite Production 27813.3.1 Stirred Tank Bioreactor (STB) 27813.3.2 Bubble Column 28013.3.3 Air- Lift 28213.3.4 Biofilm Bioreactor 28313.3.5 Solid- State Fermentation (SSF) Bioreactors 28513.3.6 Tray Bioreactor 28613.3.7 Packed Bed Bioreactor 28713.3.8 Stirred and Rotating Drum Bioreactor 28813.4 Conclusion 289Acknowledgment 289References 28914 Microbial Cell Factories for Nitrilase Production and Its Applications 297Neerja Thakur, Vinay Kumar, and Shashi Kant Bhatia14.1 Introduction 29714.2 Nitrilase Categorization, Sources, Metabolism, and Production Process 29814.2.1 Nitrilase Categorization 29814.2.2 Nitrilase Sources 29814.2.3 Nitrilase in the Metabolism of Nitriles 29814.2.4 Isolation and Screening of Nitrilase- Producing Microorganisms 29914.2.5 Cultivation of Nitrilase- Producing Microbes 29914.2.6 Nitrilase Production in Bioreactor 30114.2.6.1 Factors Affecting Nitrilase Production in a Bioreactor 30114.3 Nitrilase in the Biotransformation of Nitriles 30214.3.1 Aliphatic Acids 30514.3.1.1 Acrylic Acid 30514.3.1.2 Glycolic Acid 30514.3.2 Aromatic Acids 30514.3.2.1 Nicotinic Acid 30514.3.2.2 Isonicotinic Acid 30614.3.2.3 Benzoic Acid 30614.3.3 Arylacetic Acids 30614.3.3.1 Mandelic Acid 30614.3.3.2 Phenylacetic Acid 30714.4 Conclusion 307References 30715 Chemistry and Sources of Lactase Enzyme with an Emphasis on Microbial Biotransformation in Milk 315Alaa Kareem Niamah, Shayma Thyab Gddoa Al- Sahlany, Deepak Kumar Verma, Smita Singh, Soubhagya Tripathy, Deepika Baranwal, Nihir Shah, Ami R. Patel, Mamta Thakur, Gemilang Lara Utama, Mónica L. Chávez- González, and Cristobal Noe Aguilar15.1 Introduction 31515.2 Lactase Enzyme 31615.3 Sources of Lactase 31815.3.1 Plants 31815.3.2 Bacteria 31915.3.3 Yeasts 32115.3.4 Molds 32215.4 Microbial Biotransformation of Lactase Enzyme 32215.4.1 Improvement of Microbial Strains 32215.4.2 Galactooligosaccharide Synthesis and Transglycosylation 32415.4.3 Lactose Intolerance 32515.5 Conclusion 326References 32716 Microbial Biogas Production: Challenges and Opportunities 333Diana B. Muñiz- Márquez, Christian Iván Cano- Gómez, Jorge Enrique Wong- Paz, Victor Emmanuel Balderas- Hernández, and Fabiola Veana16.1 Introduction 33316.2 Generalities of Biogas Production: the Process and Its Yields 33416.3 Feedstocks Used in Biogas Production and Their Characteristics 33616.4 Microbial Biodiversity in Biogas Production 33716.4.1 Generalities 33716.4.2 Anaerobic Fungi in Biogas Production 33816.4.3 Anaerobic Bacteria in Biogas Production 34016.4.4 Methanogenic Archaeal and Algae in Biogas Production 34016.5 The Role of the Enzymes in Biogas Production 34116.6 Challenges and Opportunities in Biogas Production 34416.6.1 Challenges for Biogas Production 34416.6.2 Opportunities for Biogas Production 346References 34717 Molecular Farming and Anticancer Vaccine: Current Opportunities and Openings 355Yashwant Kumar Ratre, Arundhati Mehta, Sapnita Shinde, Vibha Sinha, Vivek Kumar Soni, Subash Chandra Sonkar, Dhananjay Shukla, and Naveen Kumar Vishvakarma17.1 Introduction 35517.2 Vaccines and the Possibility in Noncommunicable Diseases 35617.3 Vaccine Production 35717.3.1 Cancer Vaccine 35817.4 Types of Cancer Vaccine 35917.5 Microbial Production of Anticancer Vaccine: Challenges and Opportunities 36117.5.1 Yeast- Based Cancer Vaccine (YBCV) 36217.5.2 Bacteria- Based Cancer Vaccine (BBCV) 36417.6 Conclusion 365References 36618 Microbial Bioreactors at Different Scales for the Alginate Production by Azotobacter vinelandii 375Belén Ponce, Viviana Urtuvia, Tania Castillo, Daniel Segura, Carlos Peña, and Alvaro Díaz- Barrera18.1 Introduction 37518.2 Bacterial Alginate 37618.2.1 Compositions and Structures 37618.2.2 Applications 37618.3 Alginate Biosynthesis and Genetic Regulation 37618.4 Production of Bacterial Alginate on a Bioreactor Scale 38018.4.1 Cultivation Modality for Alginate Production 38018.4.2 Influence of Oxygen on Alginate Production 38218.4.3 Influence of Cultivation Modality on the Molecular Weight of Alginate 38418.5 Chemical Characterization of Alginate Quality 38418.5.1 Scale- up of Alginate Production 38518.6 Prospects and Conclusions 388Acknowledgment 390References 39019 Environment- Friendly Microbial Bioremediation 397Areej Shahbaz, Nazim Hussain, Tehreem Mahmood, Mubeen Ashraf, and Nida Khaliq19.1 Introduction 39719.2 Principle of Bioremediation 40019.3 Types of Bioremediations 40219.3.1 Biostimulation 40219.3.2 Bioattenuation 40219.3.3 Bioaugmentation 40319.3.4 Genetically Engineered Microorganisms (GEMs) 40319.4 Factors Affecting Microbial Bioremediation 40419.4.1 Biological Factors 40519.4.2 Environmental Factors 40519.4.2.1 Availability of Nutrients 40519.4.2.2 Temperature and pH 40619.4.2.3 Concentration of Oxygen and Moisture Content 40619.4.2.4 Site Characterization and Selection 40619.4.2.5 Metal Ions and Toxic Compounds 40719.5 Bioremediation Techniques 40719.6 Methods for Ex Situ Bioremediation 40819.6.1 Solid Phase Treatment 40819.6.1.1 Slurry Phase Bioremediation 40919.6.1.2 In Situ Bioremediation 40919.6.2 Engineered Bioremediation 40919.6.3 Intrinsic Bioremediation 41019.7 Bioremediation Using Microbial Enzymes 41019.7.1 Laccases 41119.7.2 Lipases 41119.7.3 Proteases 41119.7.4 Peroxidases 41119.7.5 Hydrolytic Enzymes 41219.7.6 Oxidoreductases 41219.8 Bioremediation Prospects 41219.9 Future Prospective 41419.10 Conclusion 415References 41520 Microbial Bioresource for Plastic- Degrading Enzymes 421Ayodeji Amobonye, Christiana Eleojo Aruwa, and Santhosh Pillai20.1 Introduction 42120.2 Classification of Plastics: Biobased, Biodegradable, and Fossil- Based Plastics 42320.2.1 Fossil- Based Plastics 42320.2.2 Biobased Plastics 42320.2.3 Biodegradable Plastics 42420.3 General Mechanism of Plastic Biodegradation 42420.4 Microbial Sources of Plastic- Degrading Enzymes 42620.4.1 Actinomycetes 42620.4.2 Algae 42720.4.3 Bacteria 42720.4.4 Fungi 42820.5 Biotechnological Strategies for Identifying/Improving Microbial Enzymes and Their Sources for Plastic Biodegradation 42920.5.1 Conventional Culturing Approach 42920.5.2 Metagenomics 43020.5.3 Recombinant Technology 43120.5.4 Protein Engineering 43120.6 Conclusion and Future Perspectives 432References 43421 Strategies, Trends, and Technological Advancements in Microbial Bioreactor System for Probiotic Products 443Soubhagya Tripathy, Ami R. Patel, Deepak Kumar Verma, Smita Singh, Gemilang Lara Utama, Mamta Thakur, Alaa Kareem Niamah, Nihir Shah, Shayma Thyab Gddoa Al- Sahlany, Prem Prakash Srivastav, Mónica L. Chávez- González, and Cristobal Noe Aguilar21.1 Introduction 44321.2 Bioreactors and Production of Probiotics 44421.2.1 Conventional Batch Bioreactor System 44721.2.2 Membrane Bioreactor System 44921.2.3 Co- culture Fermentation 45221.2.4 Recent Methods for Producing Multiple Probiotic Strains 45421.3 Strategies Employed for Harvesting and Drying Probiotic Cells 45521.4 Final Remarks and Possible Directions for the Future 456Abbreviations 457References 45722 Microbial Bioproduction of Antiaging Molecules 465Ankita Dua, Aeshna Nigam, Anjali Saxena, Gauri Garg Dhingra, and Roshan Kumar22.1 Introduction 46522.2 The Aging Process: An Overview 46622.3 Human Health and the Aging Gut Microbiome 46822.4 The Antiaging Bioproducts from Microbes 46922.4.1 Bacteria 46922.4.2 Fungi 47122.4.3 Algae 47122.5 The Impact of Microbial Bioproducts on Gut Diversity 47222.6 Microbial Bioproduction of Extremolytes 47222.7 The Role of Antiaging and Antioxidant Molecules 47322.8 Conclusions 480References 480Index 487