Medical Devices
Surgical and Image-Guided Technologies
Inbunden, Engelska, 2012
Av Martin Culjat, Rahul Singh, Hua Lee, Martin (UCLA) Culjat, Rahul (UCLA) Singh, Urbana) Lee, Hua (University of Illinois
2 389 kr
Produktinformation
- Utgivningsdatum2012-12-11
- Mått163 x 243 x 28 mm
- Vikt762 g
- FormatInbunden
- SpråkEngelska
- Antal sidor456
- FörlagJohn Wiley & Sons Inc
- ISBN9780470549186
Tillhör följande kategorier
MARTIN CULJAT, PhD, is Adjunct Assistant Professor in the UCLA Departments of Bioengineering and Surgery and the Engineering Research Director of the UCLA Center for Advanced Surgical and Interventional Technology (CASIT), a research center that promotes collaboration between medicine and engineering.RAHUL SINGH, PhD, is Adjunct Assistant Professor in the UCLA Departments of Bioengineering and Surgery. He leads several collaborative research projects at the UCLA Center for Advanced Surgical and Interventional Technology (CASIT).HUA LEE, PhD, is Professor in the Department of Electrical and Computer Engineering at UC Santa Barbara. Well known for his pioneering research laboratory, Dr. Lee is also the author of three other books on imaging technology and engineering.
- PREFACE xvii CONTRIBUTORS xixPART I INTRODUCTION TO MEDICAL DEVICES 11. Introduction 3Martin Culjat1.1 History of Medical Devices 31.2 Medical Device Terminology 61.3 Purpose of the Book 102. Design of Medical Devices 11Gregory Nighswonger2.1 Introduction 112.2 The Medical Device Design Environment 112.2.1 US Regulation 122.2.2 Differences in European Regulation 132.2.3 Standards 142.3 Basic Design Phases 152.3.1 Feasibility 152.3.2 Planning and Organization—Assembling the Design Team 162.3.3 When to Involve Regulatory Affairs 172.3.4 Conceptualizing and Review 172.3.5 Testing and Refinement 202.3.6 Proving the Concept 202.3.7 Pilot Testing and Release to Manufacturing 222.4 Postmarket Activities 252.5 Final Note 25PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 273. Instrumentation for Laparoscopic Surgery 29Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson3.1 Introduction 293.2 Basic Principles 313.3 Laparoscopic Instrumentation 343.3.1 Trocars 343.3.2 Standard Laparoscopic Instruments 373.3.3 Additional Laparoscopic Instruments 423.3.4 Specimen Retrieval Bags 443.3.5 Disposable Instruments 443.4 Innovative Applications 453.5 Summary and Future Applications 464. Surgical Instruments in Ophthalmology 49Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman4.1 Introduction 494.2 Cataract Surgery 514.2.1 Basic Technique 514.2.2 Principles of Phacoemulsification 524.2.3 Phacoemulsification Instruments 544.2.4 Phacoemulsification Systems 554.2.5 Future Directions 564.3 Vitreoretinal Surgery 564.3.1 Basic Techniques 564.3.2 Principles of Vitrectomy 574.3.3 Vitrectomy Instruments 584.3.4 Vitrectomy Systems 604.3.5 Future Directions 604.4 Other Ophthalmic Surgical Procedures 614.5 Conclusion 625. Surgical Robotics 63Jacob Rosen5.1 Introduction 635.2 Background and Leading Concepts 635.2.1 Human–Machine Interfaces: System Approach 655.2.2 Tissue Biomechanics 705.2.3 Teleoperation 725.2.4 Image-Guided Surgery 785.2.5 Objective Assessment of Skill 795.3 Commercial Systems 805.3.1 ROBODOC® (Curexo Technology Corporation) 805.3.2 daVinci (Intuitive Surgical) 835.3.3 Sensei® X (Hansen Medical) 845.3.4 RIO® MAKOplasty (MAKO Surgical Corporation) 865.3.5 CyberKnife (Accuray) 895.3.6 Renaissance™ (Mazor Robotics) 915.3.7 ARTAS® System (Restoration Robotics, Inc.) 925.4 Trends and Future Directions 936. Catheters in Vascular Therapy 99Axel Boese6.1 Introduction 996.2 Historic Overview 1006.3 Catheter Interventions 1026.4 Catheter and Guide Wire Shapes and Configurations 1056.4.1 Catheters 1056.4.2 Guide Wires 1136.5 Conclusion 116PART III ENERGY DELIVERY DEVICES AND SYSTEMS 1197. Energy-Based Hemostatic Surgical Devices 121Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh7.1 Introduction 1217.2 History of Energy-Based Hemostasis 1227.3 Energy-Based Surgical Methods and Their Effects on Tissues 1257.3.1 Disambiguation 1267.3.2 Thermal Effects on Tissues 1277.4 Electrosurgery 1287.4.1 Electrosurgical Theory 1287.4.2 Cutting and Coagulation Techniques 1307.4.3 Equipment 1317.4.4 Considerations and Complications 1337.5 Future Of Electrosurgery 1347.6 Conclusion 1358. Tissue Ablation Systems 137Michael Douek, Justin McWilliams, and David Lu8.1 Introduction 1378.2 Evolving Paradigms in Cancer Therapy 1388.3 Basic Ablation Categories and Nomenclature 1408.4 Hyperthermic Ablation 1408.5 Fundamentals of In Vivo Energy Deposition 1418.6 Hyperthermic Ablation: Optimizing Tissue Ablation 1438.7 Radiofrequency Ablation 1448.8 RFA: Basic Principles 1458.9 RFA: In Vivo Energy Deposition 1458.10 Optimizing RFA 1478.11 Other Hyperthermic Ablation Techniques 1498.11.1 Microwave Ablation (MWA) 1498.11.2 MWA: Basic Principles 1498.11.3 MWA: In Vivo Energy Deposition 1518.11.4 Optimizing MWA 1528.12 Laser Ablation 1538.13 Hypothermic Ablation 1548.13.1 Cryoablation: Basic Concepts 1548.13.2 Cryoablation: In Vivo Considerations 1548.13.3 Optimizing Cryoablation Systems 1548.14 Chemical Ablation 1578.15 Novel Techniques 1588.15.1 High Intensity Focused Ultrasound (HIFU) 1588.15.2 Irreversible Electroporation (IRE) 1598.16 Tumor Ablation and Beyond 1609. Lasers in Medicine 163Zachary Taylor, Asael Papour, Oscar Stafsudd, and Warren Grundfest9.1 Introduction 1639.1.1 Historical Perspective 1649.1.2 Basic Operational Concepts 1659.1.3 First Experimental MASER (Microwave Amplification by Stimulated Emission of Radiation) 1669.2 Laser Fundamentals 1679.2.1 Two-Level Systems and Population Inversion 1679.2.2 Multiple Energy Levels 1679.2.3 Mode of Operation 1699.2.4 Beams and Optics 1719.3 Laser Light Compared to Other Sources of Light 1749.3.1 Temporal Coherence 1749.3.2 Spectral Coherence (Line Width) 1759.3.3 Beam Collimation 1779.3.4 Short Pulse Duration 1779.3.5 Summary 1789.4 Laser–Tissue Interactions 1789.4.1 Biostimulation 1789.4.2 Photochemical Interactions 1799.4.3 Photothermal Interactions 1809.4.4 Ablation 1809.4.5 Photodisruption 1819.5 Lasers in Diagnostics 1819.5.1 Optical Coherence Tomography 1819.5.2 Fluorescence Angiography 1849.5.3 Near Infrared Spectroscopy 1859.6 Laser Treatments and Therapy 1869.6.1 Overview of Current Medical Applications of Laser Technology 1869.6.2 Retinal Photodynamic Therapy (Photochemical) 1889.6.3 Transpupillary Thermal Therapy (TTT) (Photothermal) 1889.6.4 Vascular Birth Marks (Photocoagulation) 1909.6.5 Laser Assisted Corneal Refractive Surgery (Ablation) 1919.7 Conclusions 196PART IV IMPLANTABLE DEVICES AND SYSTEMS 19710. Vascular and Cardiovascular Devices 199Dan Levi, Allan Tulloch, John Ho, Colin Kealey, and David Rigberg10.1 Introduction 19910.2 Biocompatibility Considerations 20010.3 Materials 20210.3.1 316L Stainless Steel 20310.3.2 Nitinol 20310.3.3 Cobalt–Chromium Alloys 20410.4 Stents 20410.5 Closure Devices 20610.6 Transcatheter Heart Valves 20810.7 Inferior Vena Cava Filters 21210.8 Future Directions–Thin Film Nitinol 21410.9 Conclusion 21611. Mechanical Circulatory Support Devices 219Colin Kealey, Paymon Rahgozar, and Murray Kwon11.1 Introduction 21911.2 History 22011.3 Basic Principles 22111.3.1 Biocompatibility and Mechanical Circulatory Support Devices 22111.3.2 Hemocompatibility: Microscopic Considerations 22211.3.3 Hemocompatibility: Macroscopic Considerations 22311.4 Engineering Considerations in Mechanical Circulatory Support 22311.4.1 Overview 22311.4.2 Pump Design 22511.4.3 Positive Displacement Pumps 22511.4.4 Rotary Pumps 22611.4.5 Pulsatile Versus Nonpulsatile Flow 22811.5 Devices 22811.5.1 The HeartMate XVE Left Ventricular Assist System 22811.5.2 The HeartMate II Left Ventricular Assist System 23111.5.3 Short-Term Mechanical Circulatory Support: The Intraaortic Balloon Pump 23411.5.4 Pediatric Mechanical Circulatory Support: The Berlin Heart 23711.6 The Future of MCS Devices 23911.6.1 CorAide 23911.6.2 HeartMate III 23911.6.3 HeartWare 24011.6.4 VentrAssist 24011.7 Summary 24012. Orthopedic Implants 241Sophia N. Sangiorgio, Todd S. Johnson, Jon Moseley, G. Bryan Cornwall, and Edward Ebramzadeh12.1 Introduction 24112.1.1 Overview 24112.1.2 History 24312.2 Basic Principles 24412.2.1 Optimization for Strength and Stiffness 24512.2.2 Maximization of Implant Fixation to Host Bone 25012.2.3 Minimization of Degradation 25112.2.4 Sterilization of Implants and Instrumentation 25312.3 Implant Technologies 25312.3.1 Total Hip Replacement 25412.3.2 Technology in Total Knee Replacement 26312.3.3 Technology in Spine Surgery 26812.4 Summary 272PART V IMAGING AND IMAGE-GUIDED TECHNIQUES 27513. Endoscopy 277Gregory Nighswonger13.1 Introduction 27713.2 Ancient Origins 27813.3 Modern Endoscopy 28013.3.1 Creating Cold Light 28013.3.2 Introduction of Rod-Lens Technology 28013.4 Principles of Modern Endoscopy 28313.4.1 Optics 28413.4.2 Mechanics 28413.4.3 Electronics 28413.4.4 Software 28513.5 The Imaging Chain 28513.5.1 Light Source (1) 28613.5.2 Telescope (2) 28613.5.3 Camera Head (3) 28713.5.4 Camera CCU (4) 28713.5.5 Video Cables (5) 28713.5.6 Monitor (6) 28713.5.7 Image Management Systems (7) 28813.6 Endoscopes for Today 28813.6.1 Rigid Endoscopes—Designs to Enhance Functionality 28913.6.2 Less Traumatic Ureterorenoscopes 29013.6.3 Advances in Flexible Endoscope Design 29113.6.4 Broader Functionality with New Technologies 29413.6.5 Enhancing Video Capabilities 29913.7 Endoscopy’s Future 30114. Medical Ultrasound Devices 303Rahul Singh and Martin Culjat14.1 Introduction 30314.2 Basic Principles of Ultrasound 30414.2.1 Basic Acoustic Physics 30414.2.2 Reflection and Refraction 30714.2.3 Attenuation 30714.2.4 Piezoelectricity 30814.2.5 Ultrasound Systems 31014.2.6 Resolution and Bandwidth 31214.2.7 Beam Characteristics 31414.3 Ultrasound Transducer Design 31614.3.1 Piezoelectric Material 31714.3.2 Backing Layers and Damping 31814.3.3 Matching Layers 31814.3.4 Mechanical Focusing 31914.3.5 Electrical Matching 32014.3.6 Sector Scanners 32014.3.7 Array Transducers 32214.3.8 Transducer Array Fabrication 32514.3.9 Regulatory Considerations 32714.4 Applications of Medical Ultrasound 32914.4.1 Image Guidance Applications 33014.4.2 Intravascular and Intracardiac Applications 33214.4.3 Intraoral and Endocavity Applications 33314.4.4 Surgical Applications 33414.4.5 Ophthalmic Ultrasound 33514.4.6 Doppler and Doppler Applications 33614.4.7 Therapeutic Applications 33614.5 The Future of Medical Ultrasound 33815. Medical X-ray Imaging 341Mark Roden15.1 Introduction 34115.2 X-ray Physics 34215.2.1 Photon Interactions with Matter 34215.2.2 Clinical Production of X-rays 34315.2.3 Patient Dose Considerations 34615.3 Two-Dimensional Image Acquisition 34815.4 Image Acquisition Technologies and Techniques 35115.4.1 Film 35115.4.2 Computed Radiography 35415.4.3 Digital Radiography 35815.4.4 Clinical Applications of 2D X-ray Techniques 36015.5 Basic 2D Processing Techniques 36115.5.1 Independent Pixel Operations 36215.5.2 Grouped Pixel Operations 36315.5.3 Image Transformation Operations 36615.6 Real-Time X-ray Imaging 36715.6.1 Fluoroscopy Technology 36715.6.2 Angiography 37015.7 Three-Dimensional X-ray Imaging 37215.8 Conclusion 37316. Navigation in Neurosurgery 375Jean-Jacques Lemaire, Eric J. Behnke, Andrew J. Frew, and Antonio A. F. DeSalles16.1 Basics of Neurosurgery 37516.1.1 General Technical Issues in Neurosurgery 37516.1.2 Instrumentation in Neurosurgery 37616.1.3 Complications 37716.1.4 Functional Neurosurgery 37816.1.5 Stereotactic Neurosurgery 37816.1.6 Neuroimaging for Neurosurgery 37916.2 Introduction to Neuronavigation 38116.3 Neuronavigation Systems 38116.3.1 The Tracking System 38216.3.2 The Display Unit 38316.3.3 The Control Unit 38516.4 Implementation of Neuronavigation 38616.4.1 Surgical Planning 38616.4.2 Patient Registration 38716.4.3 Navigation 38916.5 Augmented Reality and Virtual Reality 39016.6 Summary/Future 391REFERENCES 395INDEX 425