Mechanical and Dynamic Properties of Biocomposites
Inbunden, Engelska, 2021
Av Senthilkumar Krishnasamy, R. Nagarajan, Senthil Muthu Kumar Thiagamani, Suchart Siengchin, India) Krishnasamy, Senthilkumar (Kalasalingam Academy of Research and Education, India) Nagarajan, R. (Kalasalingam Academy of Research and Education, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok
2 099 kr
Produktinformation
- Utgivningsdatum2021-06-16
 - Mått170 x 244 x 21 mm
 - Vikt794 g
 - FormatInbunden
 - SpråkEngelska
 - Antal sidor336
 - FörlagWiley-VCH Verlag GmbH
 - ISBN9783527346264
 
Tillhör följande kategorier
Senthilkumar Krishnasamy is Associate Professor, at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India.Rajini Nagarajan is Professor in Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, India.Senthil Muthu Kumar Thiagamani Associate Professor at Kalasalingam Academy of Research and Education, Department of Mechanical Engineering, Krishnankoil, India.Suchart Siengchin is Professor at the Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand.
- 1 Mechanical Behaviors of Natural Fiber-Reinforced Polymer Hybrid Composites 1Adelani A. Oyeniran and Sikiru O. Ismail1.1 Introduction 11.2 Concept of Natural Fibers and/or Biopolymers: Biocomposites 31.2.1 Natural Fiber-Reinforced Polymer Composites or Biocomposites 31.2.2 Polymer Matrices 41.3 Hybrid Natural Fiber-Reinforced Polymeric Biocomposites 71.4 Mechanical Behaviors of Natural Fiber-Reinforced Polymer-Based Hybrid Composites 101.4.1 Hybrid Natural FRP Composites 111.4.1.1 Bagasse/Jute FRP Hybrid Composites 111.4.1.2 Bamboo/MFC FRP Hybrid Composites 121.4.1.3 Banana/Kenaf and Banana/Sisal FRP Hybrid Composites 121.4.1.4 Coconut/Cork FRP Hybrid Composites 141.4.1.5 Coir/Silk FRP Hybrid Composites 151.4.1.6 Corn Husk/Kenaf FRP Hybrid Composites 161.4.1.7 Cotton/Jute and Cotton/Kapok FRP Hybrid Composites 161.4.1.8 Jute/OPEFB FRP Hybrid Composites 181.4.1.9 Kenaf/PALF FRP Hybrid Composites 181.4.1.10 Sisal/Roselle and Sisal/Silk FRP Hybrid Composites 191.5 Other Related Properties that Are Dependent on Mechanical Properties 201.5.1 Tribological Behavior 201.5.2 Thermal Behavior 211.6 Progress and Future Outlooks of Mechanical Behaviors of Natural FRP Hybrid Composites 211.7 Conclusions 22References 232 Mechanical Behavior of Additive Manufactured Porous Biocomposites 27Ramu Murugan and Mohanraj Thangamuthu2.1 Introduction 272.2 Human Bone 272.3 Porous Scaffold 292.4 Biomaterials for Scaffolds 302.4.1 Required Properties of Biomaterials 302.4.2 Types of Biomaterials 312.4.2.1 Metals 312.4.2.2 Polymers 312.4.2.3 Ceramics 322.4.2.4 Composites 322.5 Additive Manufacturing of Porous Structures 332.5.1 Generic Process of AM 332.5.2 Powder Bed Fusion Process 342.5.3 Fused Deposition Modeling Process 352.5.4 Additive Manufacturing of Porous Biocomposites 352.6 Design of Porous Scaffold 362.6.1 Pore Size 362.6.2 Pore Geometry 372.6.3 Bioceramics as Reinforcement Material 372.7 Mechanical Characterization of Additive Manufactured Porous Biocomposites 382.8 Conclusion 41References 413 Mechanical and Dynamic Mechanical Analysis of Bio-based Composites 49R.A. Ilyas, S.M. Sapuan, M.R.M. Asyraf, M.S.N. Atikah, R. Ibrahim, Mohd N.F. Norrrahim, Tengku A.T. Yasim-Anuar, and Liana N. Megashah3.1 Introduction 493.2 Mechanical Properties of Macro-scale Fiber 503.3 Mechanical Properties of Nano-scale Fiber 503.3.1 Factors Affecting Mechanical Properties of Bionanocomposites 503.3.1.1 Fabrication Method 513.3.1.2 Nanocellulose Loading 533.3.1.3 Nanocellulose Dispersion and Distribution 533.3.1.4 Nanocellulose Orientation 533.3.2 The Static Mechanical Properties of Bionanocomposites 543.4 Dynamic Mechanical Analysis (DMA) of Biocomposites 553.4.1 Single Fiber 573.4.1.1 Sugar Palm 573.4.1.2 Bamboo 573.4.1.3 Kenaf 593.4.1.4 Alfa 593.4.1.5 Carnauba 593.4.1.6 Pineapple Leaf Fiber (PALF) 603.4.1.7 Oil Palm Fiber (OPF) 603.4.1.8 Red Algae 603.4.1.9 Banana 613.4.1.10 Flax 623.4.1.11 Jute 623.4.1.12 Hemp 633.4.1.13 Waste Silk Fiber 633.4.1.14 Henequen 643.4.2 Hybrid Fiber 643.4.2.1 Sisal/Oil Palm 643.4.2.2 Coir/PALF 653.4.2.3 Kenaf/PALF 653.4.2.4 Palmyra Palm Leaf Stalk Fiber (PPLSF)/Jute 663.4.2.5 Oil Palm Empty Fruit Bunch (OPEFB)/Cellulose 663.5 Dynamic Mechanical Properties of Bionanocomposites 663.5.1 The Dynamic Mechanical Properties of Bionano composites 673.6 Conclusion 68References 684 Physical and Mechanical Properties of Biocomposites Based on Lignocellulosic Fibers 77Nadir Ayrilmis, Sarawut Rimdusit, Rajini Nagarajan, and M.P. Indira Devi4.1 Introduction 774.2 Major Factors Influencing Quality of Biocomposites 824.2.1 Selection of Natural Fibers 824.2.2 Effect of Fiber/Particle Size on the Physical and Mechanical Properties of Biocomposites 854.2.3 Effect of Filler Content on the Mechanical Properties of Biocomposites 884.2.4 Compatibility Between Natural Fiber/Polymer Matrix and Surface Modification 914.2.5 Type of Polymer Matrix 954.2.6 Processing Conditions in the Manufacture of Biocomposite 964.2.7 Presence of Voids and Porosity 984.2.8 Nanocellulose-Reinforced Biocomposites 984.2.8.1 Preparation and Properties of Cellulose Nanofibers 1014.2.8.2 Industrial Applications of Cellulose Nanofibers 1014.3 Conclusions 103References 1035 Machinability Analysis on Biowaste Bagasse-Fiber-Reinforced Vinyl Ester Composite Using S/N Ratio and ANOVA Method 109Balasubramaniam Stalin, Ayyanar Athijayamani, and Rajini Nagarajan5.1 Introduction 1095.2 Experimental Methodology 1115.2.1 Materials 1115.2.2 Specimen Preparation 1115.2.3 Machining of the Composite Specimen 1115.2.4 Selection of Orthogonal Array 1115.2.5 Development of Multivariable Nonlinear Regression Model 1135.3 Results and Discussion 1145.3.1 Influence of Machining Parameters on Thrust Force and Torque 1145.3.2 S/N Ratio 1155.3.3 ANOVA 1155.3.4 Correlation of Machining Parameters with Responses 1165.3.5 Confirmation Test 1175.4 Conclusions 118References 1186 Mechanical and Dynamic Properties of Kenaf-Fiber-Reinforced Composites 121Brijesh Gangil, Lalit Ranakoti, and Pawan K. Rakesh6.1 Introduction 1216.2 Mechanical Properties of Kenaf-Fiber-Reinforced Polymer Composite 1226.3 Dynamic Mechanical Analysis 1246.4 Storage Modulus (E’) of Kenaf Fiber–Polymer Composite 1256.5 Loss Modulus (E’’) of Kenaf Fiber–Polymer Composite 1256.6 Damping Factor (Tan 𝛿) 1266.7 Glass Transition Temperatures (Tg) 1276.8 Conclusion 130References 1317 Investigation on Mechanical Properties of Surface-Treated Natural Fibers-Reinforced Polymer Composites 135Sabarish Radoor, Jasila Karayil, Aswathy Jayakumar, and Suchart Siengchin7.1 Introduction 1357.2 Mechanical Properties of Natural Fibers 1357.3 Drawbacks of Natural Fibers 1367.4 Surface Modification of Natural Fibers 1377.4.1 Chemical Treatment 1377.4.2 Alkaline Treatment 1377.4.3 Silane Treatment 1407.4.4 Acetylation Treatment 1437.4.5 Benzylation Treatment 1457.4.6 Peroxide Treatment 1467.5 Maleated Coupling Agents 1477.5.1 Isocyanate 1487.5.2 Permanganate Treatment 1507.5.3 Stearic Acid Treatment 1517.5.4 Physical Treatment 1527.5.5 Plasma Treatment 1527.5.6 Corona Treatment 1547.5.7 Ozone Treatment 1557.6 Summary 156References 1568 Mechanical and Tribological Characteristics of IndustrialWaste and Agro Waste Based Hybrid Composites 163Vigneswaran Shanmugam, Uthayakumar Marimuthu, Veerasimman Arumugaprabu, Sundarakannan Rajendran, and Rajendran Deepak Joel Johnson8.1 Introduction 1638.2 Materials and Methods 1648.2.1 Scanning Electron Microscopy (SEM) 1668.3 Result and Discussion 1668.3.1 Effect of Chemical Treatment on Fiber 1668.3.2 Mechanical Behavior 1678.3.3 Erosion Behavior 1698.3.3.1 Effect of Fiber Treatment on Erosion Rate 1698.3.3.2 Effect of Red Mud Addition on Erosion Rate 1708.3.3.3 Effect of Impact Angle on Erosion Rate 1708.4 Conclusion 173References 1739 Dynamic Properties of Kenaf-Fiber-Reinforced Composites 175Rashed Al Mizan, Nur N. Akter, and Mohammad I. Iqbal9.1 Introduction 1759.2 Manufacturing Techniques for Kenaf-Fiber-Reinforced Composites 1769.3 Characterization 1779.3.1 Dynamic Mechanical Analysis (DMA) 1789.3.2 Thermogravimetric Analysis (TGA) 1789.3.3 Vibration-Damping Testing 1789.3.4 Acoustic Properties 1799.4 Overview of the Dynamics Properties of Kenaf-Fiber-Reinforced Composite 1799.4.1 Dynamic Mechanical Properties (DMA) 1809.4.2 TGA Analysis of Composites 1849.4.3 Acoustic Properties 1869.5 Conclusion 187References 18710 Effect of Micro-Dry-Leaves Filler and Al-SiC Reinforcement on the Thermomechanical Properties of Epoxy Composites 191Mohit Hemath, Govindrajulu Hemath Kumar, Varadhappan Arul Mozhi Selvan, Mavinkere R. Sanjay, and Suchart Siengchin10.1 Introduction 19110.2 Materials and Methods 19310.2.1 Materials 19310.2.2 Production of Al-SiC Nanoparticles 19310.2.3 Fabrication of Epoxy Composites 19410.2.4 Epoxy Composite Characterization 19410.2.4.1 Porosity, Density, and Volume Fraction 19410.2.4.2 Tensile Properties 19410.2.4.3 Flexural Properties 19410.2.4.4 Impact Strength 19510.2.4.5 Dynamic Mechanical Analysis (DMA) 19510.2.4.6 Morphological Properties 19510.3 Results and Discussion 19510.3.1 Quality of Fabrication and Volume Fraction of Epoxy Composites 19510.3.2 Tensile Characteristics 19610.3.3 Flexural Characteristics 19710.3.4 Impact Characteristics 19810.3.5 Dynamic Mechanical Analysis 19910.3.5.1 Storage Modulus 19910.3.5.2 Loss Modulus 20010.3.5.3 Damping Factor 20110.3.6 Morphological Characteristics 20110.4 Conclusion 201References 20211 Effect of Fillers on Natural Fiber–Polymer Composite: An Overview of Physical and Mechanical Properties 207Annamalai Saravanakumaar, Arunachalam Senthilkumar, and Balasundaram Muthu Chozha Rajan11.1 Introduction 20711.2 Influence of Cellulose Micro-filler on the Flax, Pineapple Fiber-Reinforced Epoxy Matrix Composites 20811.3 Influence of Sugarcane Bagasse Filler on the Cardanol Polymer Matrix Composites 20811.4 Influence of Sugarcane Bagasse Filler on the Natural Rubber Composites 20911.5 Influence of Fly Ash onWood Fiber Geopolymer Composites 21011.6 Influence of Eggshell Powder/Nanoclay Filler on the Jute Fiber Polyester Composites 21111.7 Influence of Portunus sanguinolentus Shell Powder on the Jute Fiber–Epoxy Composite 21211.8 Influence of Nano-SiO2 Filler on the Phaseolus vulgaris Fiber–Polyester Composite 21411.9 Influence of Aluminum Hydroxide (Al(OH)3) Filler on the Vulgaris Banana Fiber–Epoxy Composite 21511.10 Influence of Palm and Coconut Shell Filler on the Hemp–Kevlar Fiber–Epoxy Composite 21611.11 Influence of Coir Powder Filler on Polyester Composite 21711.12 Influence of CaCO3 (Calcium Carbonate) Filler on the Luffa Fiber–Epoxy Composite 21711.13 Influence of Pineapple Leaf, Napier, and Hemp Fiber Filler on Epoxy Composite 21811.14 Influence of Dipotassium Phosphate Filler on Wheat Straw Fiber–Natural Rubber Composite 22011.15 Influence of Groundnut Shell, Rice Husk, andWood Powder Fillers on the Luffa cylindrica Fiber–Polyester Composite 22011.16 Influence of Rice Husk Fillers on the Bauhinia vahlii – Sisal Fiber–Epoxy Composite 22111.17 Influence of Areca Fine Fiber Fillers on the Calotropis gigantea Fiber Phenol Formaldehyde Composite 22111.18 Influence of Tamarind Seed Fillers on the Flax Fiber–Liquid Thermoplastic Composite 22311.19 Influence ofWalnut Shell, Hazelnut Shell, and Sunflower Husk Fillers on the Epoxy Composites 22311.20 Influence ofWaste Vegetable Peel Fillers on the Epoxy Composite 22411.21 Influence of Clusia multiflora Saw Dust Fillers on the Rubber Composite 22411.22 Influence ofWood Flour Fillers on the Red Banana Peduncle Fiber Polyester Composite 22511.23 Influence ofWood Dust Fillers (Rosewood and Padauk) on the Jute Fiber–Epoxy Composite 22511.24 Summary 22611.25 Conclusions 226References 23112 Temperature-Dependent Dynamic Mechanical Properties and Static Mechanical Properties of Sansevieria cylindrical Reinforced Biochar-Tailored Vinyl Ester Composite 235Rajendran Deepak Joel Johnson, Veerasimman Arumugaprabu, Rajini Nagarajan, Fernando G. Souza, and Vigneswaran Shanmugam12.1 Introduction 23512.2 Materials and Method 23612.2.1 Materials 23612.2.2 Biochar Characterization 23812.2.2.1 Particle Size Analyzer 23812.2.2.2 X-ray Diffraction 23812.2.2.3 FTIR Spectroscopy 23812.2.3 Composite Fabrication 23912.2.4 Dynamic Mechanical Analysis (DMA) 23912.2.5 Tensile Testing 23912.2.6 Flexural Testing 24012.2.7 Impact Testing 24012.2.8 Scanning Electron Microscopy 24012.3 Results and Discussion 24012.3.1 Biochar Characterization 24012.3.1.1 Particle Analyzer 24012.3.1.2 Fourier Transform (InfraRed) Spectroscopy 24012.3.1.3 X-ray Diffraction 24212.3.2 Dynamic Mechanical Analysis 24312.3.3 Tensile Tests 24712.3.4 Flexural Tests 24812.3.5 Impact Tests 24912.4 Conclusions 251References 25113 Development and Sustainability of Biochar Derived from Cashew Nutshell-Reinforced Polymer Matrix Composite 255Rajendren Sundarakannan, Vigneswaran Shanmugam, Veerasimman Arumugaprabu, Vairavan Manikandan, and Paramasivan Sivaranjana13.1 Introduction 25513.2 Materials and Methods 25713.2.1 Biochar Preparation 25713.2.2 Composite Preparation 25713.2.3 Mechanical Testing 25813.3 Results and Discussion 25813.3.1 Tensile Strength 25813.3.2 Flexural Strength 25913.3.3 Impact Strength 26013.3.4 Hardness 26013.3.5 Failure Analysis of Cashew NutshellWaste Extracted Biochar-Reinforced Polymer Composites 26113.3.5.1 Tensile Strength Failure Analysis 26113.3.5.2 Flexural Strength Failure Analysis 26213.3.5.3 Impact Strength Failure Analysis 26213.4 Conclusion 263References 26314 Influence of Fiber Loading on the Mechanical Properties and Moisture Absorption of the Sisal Fiber-Reinforced Epoxy Composites 265Banisetti Manoj, Chandrasekar Muthukumar, Chennuri Phani Durga Prasad, Swathi Manickam, and Titus I. Benjamin14.1 Introduction 26514.1.1 Sisal Fibers 26514.1.2 Fiber Parameters Affecting Mechanical Properties of the Composite 26614.2 Materials and Methods 26614.2.1 Materials 26614.2.2 Fabrication Method 26614.2.3 Characterization 26614.2.3.1 Tensile Test 26614.2.3.2 Flexural Test 26714.2.3.3 Moisture Diffusion 26714.3 Results and Discussion 26714.3.1 Tensile Properties 26714.3.2 Flexural Properties 26914.3.3 Water Absorption 27114.4 Conclusion 272References 27215 Mechanical and Dynamic Properties of Ramie Fiber-Reinforced Composites 275Manickam Ramesh, Lakshminarasimhan Rajeshkumar, and Devarajan Balaji15.1 Introduction 27515.2 Mechanical Strength of Ramie Fiber Composites 27715.3 Dynamic Properties of Ramie Fiber Composites 28115.3.1 Temperature Influence 28315.3.2 Storage Modulus 28315.3.3 Viscous Modulus 28415.3.4 Damping Factor 28415.4 Conclusion 288References 28916 Fracture Toughness of the Natural Fiber-Reinforced Composites: A Review 293Haasith Chittimenu, Monesh Pasupureddy, Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, and Suchart Siengchin16.1 Introduction 29316.1.1 Fracture Toughness Tests 29416.1.2 Mode-I Loading 29616.1.2.1 Double Cantilever Beam Method (DCB) 29616.1.2.2 Compact Tensile Method (CT) 29616.1.2.3 Single-Edge Notch Bend Test (SENB) 29616.1.3 Mode-II Loading 29716.1.3.1 End-Notched Flexure Test (ENF) 29716.1.4 Mode-III Loading 29716.1.4.1 Split Cantilever Beam Method (SCB) 29716.1.4.2 Edge Crack Torsion Test (ECT) 29816.1.4.3 Mixed Mode Bend Test (MMB) 29816.2 Factors Affecting the Fracture Energy of the Biocomposites 29816.2.1 Fiber Parameters 29816.2.2 Hybridization 29916.2.3 Fiber Treatment 29916.2.4 Aging 30116.3 Conclusion 302Acknowledgments 302References 30217 Dynamic Mechanical Behavior of Hybrid Flax/Basalt Fiber Polymer Composites 305Arun Prasath Kanagaraj, Amuthakkannan Pandian, Veerasimman Arumugaprabu, Rajendran Deepak Joel Johnson, Vigneswaran Shanmugam, and Vairavan Manikandan17.1 Introduction 30517.2 Materials and Methods 30717.2.1 Materials 30717.2.2 Fabrication of Composites 30717.2.3 Dynamic Mechanical Analysis 30717.3 Result and Discussion 30817.3.1 Damping Factor (Tan 𝛿) Response of Basalt/Flax Fiber Composite 30817.3.2 Storage Modulus (E′) Response of Basalt/Flax Fiber Composite 30817.3.3 Loss Modulus Performance of Basalt/Flax Fiber Composites 30917.4 Conclusions 309Acknowledgments 310References 310Index 313
 
Du kanske också är intresserad av
Polyester-Based Biocomposites
Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Suchart Siengchin, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, India) Muthu Kumar Thiagamani, Senthil (Kalasalingam Academy of Research and Education, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB)
1 039 kr
Sandwich Composites
Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Rangappa, Sanjay Mavinkere (University of Technology, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB)
2 949 kr
Vinyl Ester-Based Biocomposites
Senthil Muthu Kumar Thiagamani, Chandrasekar Muthukumar, Senthilkumar Krishnasamy, Suchart Siengchin, India) Muthu Kumar Thiagamani, Senthil (Kalasalingam Academy of Research and Education, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB)
3 249 kr
Natural Fiber-Reinforced Composites
Senthilkumar Krishnasamy, Senthil Muthu Kumar Thiagamani, Chandrasekar Muthukumar, R. Nagarajan, Suchart Siengchin, Thailand) Krishnasamy, Senthilkumar (King Mongkut's University of Technology North Bangkok, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, India) Muthukumar, Chandrasekar (Hindustan Institute of Technology & Science, India) Nagarajan, R. (Kalasalingam Academy of Research and Education, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok
1 969 kr
Sandwich Composites
Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Senthil Muthu Kumar Thiagamani, Sanjay Mavinkere Rangappa, Suchart Siengchin, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Rangappa, Sanjay Mavinkere (University of Technology, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB)
1 019 kr
Vibration and Damping Behavior of Biocomposites
Senthil Muthu Kumar Thiagamani, Md Enamul Hoque, Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Suchart Siengchin, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB), Enamul Hoque
2 949 kr
Vibration and Damping Behavior of Biocomposites
Senthil Muthu Kumar Thiagamani, Md Enamul Hoque, Senthilkumar Krishnasamy, Chandrasekar Muthukumar, Suchart Siengchin, India) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, India) Muthukumar, Chandrasekar (School of Aeronautical Sciences, Hindustan Institute of Technology & Science, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB), Enamul Hoque
899 kr
Food Packaging
Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, Senthil Muthu Kumar Thiagamani, Senthilkumar Krishnasamy, Suchart Siengchin, Thailand) Rangappa, Sanjay Mavinkere (University of Technology, India) Parameswaranpillai, Jyotishkumar (Cochin University of Science and Technology, Kerala, Srivilliputhur) Thiagamani, Senthil Muthu Kumar (Kalasalingam Academy of Research and Education, Thailand) Krishnasamy, Senthilkumar (King Mongkut’s University of Technology North Bangkok, Thailand) Siengchin, Suchart (King Mongkut's University of Technology North Bangkok (KMUTNB)
959 kr