Matrix Functions of Bounded Type: an Interplay Between Function Theory and Operator Theory
Häftad, Engelska, 2019
1 719 kr
Slutsåld
In this paper, the authors study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. They first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. They propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. They also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejer Interpolation Problem for matrix rational functions.The authors then extend the $H^\infty$-functional calculus to an $\overline{H^\infty}+H^\infty$-functional calculus for the compressions of the shift. Next, the authors consider the subnormality of Toeplitz operators with matrix-valued bounded type symbols and, in particular, the matrix-valued version of Halmos's Problem 5 and then establish a matrix-valued version of Abrahamse's Theorem. They also solve a subnormal Toeplitz completion problem of $2\times 2$ partial block Toeplitz matrices. Further, they establish a characterization of hyponormal Toeplitz pairs with matrix-valued bounded type symbols and then derive rank formulae for the self-commutators of hyponormal Toeplitz pairs.
Produktinformation
- Utgivningsdatum2019-10-30
- Mått178 x 254 x undefined mm
- Vikt213 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- Antal sidor100
- FörlagAmerican Mathematical Society
- ISBN9781470436247