Mathematical Foundations of Nature-Inspired Algorithms

Häftad, Engelska, 2019

Av Xin-She Yang, Xing-Shi He

849 kr

Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

This book presents a systematic approach to analyze nature-inspired algorithms. Beginning with an introduction to optimization methods and algorithms, this book moves on to provide a unified framework of mathematical analysis for convergence and stability. Specific nature-inspired algorithms include: swarm intelligence, ant colony optimization, particle swarm optimization, bee-inspired algorithms, bat algorithm, firefly algorithm, and cuckoo search. Algorithms are analyzed from a wide spectrum of theories and frameworks to offer insight to the main characteristics of algorithms and understand how and why they work for solving optimization problems. In-depth mathematical analyses are carried out for different perspectives, including complexity theory, fixed point theory, dynamical systems, self-organization, Bayesian framework, Markov chain framework, filter theory, statistical learning, and statistical measures. Students and researchers in optimization, operations research, artificial intelligence, data mining, machine learning, computer science, and management sciences will see the pros and cons of a variety of algorithms through detailed examples and a comparison of algorithms.

Produktinformation

  • Utgivningsdatum2019-05-20
  • Mått155 x 235 x undefined mm
  • FormatHäftad
  • SpråkEngelska
  • SerieSpringerBriefs in Optimization
  • Antal sidor107
  • FörlagSpringer Nature Switzerland AG
  • ISBN9783030169350

Mer från samma författare