Del 40 - Cambridge Series in Statistical and Probabilistic Mathematics
Mathematical Foundations of Infinite-Dimensional Statistical Models
Inbunden, Engelska, 2015
Av Evarist Giné, Richard Nickl, Evarist (University of Connecticut) Gine, Richard (University of Cambridge) Nickl, Evarist Giné
1 629 kr
Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.
Produktinformation
- Utgivningsdatum2015-11-18
- Mått186 x 261 x 45 mm
- Vikt1 380 g
- FormatInbunden
- SpråkEngelska
- SerieCambridge Series in Statistical and Probabilistic Mathematics
- Antal sidor706
- FörlagCambridge University Press
- ISBN9781107043169