Markov Models for Pattern Recognition
From Theory to Applications
Inbunden, Engelska, 2014
1 169 kr
Beställningsvara. Skickas inom 10-15 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Finns i fler format (1)
This thoroughly revised and expanded new edition now includes a more detailed treatment of the EM algorithm, a description of an efficient approximate Viterbi-training procedure, a theoretical derivation of the perplexity measure and coverage of multi-pass decoding based on n-best search. Supporting the discussion of the theoretical foundations of Markov modeling, special emphasis is also placed on practical algorithmic solutions. Features: introduces the formal framework for Markov models; covers the robust handling of probability quantities; presents methods for the configuration of hidden Markov models for specific application areas; describes important methods for efficient processing of Markov models, and the adaptation of the models to different tasks; examines algorithms for searching within the complex solution spaces that result from the joint application of Markov chain and hidden Markov models; reviews key applications of Markov models.
Produktinformation
- Utgivningsdatum2014-01-28
 - Mått155 x 235 x 22 mm
 - Vikt606 g
 - FormatInbunden
 - SpråkEngelska
 - SerieAdvances in Computer Vision and Pattern Recognition
 - Antal sidor276
 - Upplaga2
 - FörlagSpringer London Ltd
 - ISBN9781447163077