bokomslag Machine Learning Techniques for Space Weather
Data & IT

Machine Learning Techniques for Space Weather

Enrico Camporeale Simon Wing Jay Johnson

Pocket

1789:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Denna produkt går inte att reservera, köp den gärna online!

  • 454 sidor
  • 2018
Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields.
  • Författare: Enrico Camporeale, Simon Wing, Jay Johnson
  • Format: Pocket/Paperback
  • ISBN: 9780128117880
  • Språk: Engelska
  • Antal sidor: 454
  • Utgivningsdatum: 2018-05-22
  • Förlag: Elsevier Science Publishing Co Inc