Machine Learning Evaluation

Towards Reliable and Responsible AI

Inbunden, Engelska, 2024

Av Nathalie Japkowicz, Zois Boukouvalas, Washington DC) Japkowicz, Nathalie (American University, Washington DC) Boukouvalas, Zois (American University

969 kr

Beställningsvara. Skickas inom 7-10 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.

As machine learning applications gain widespread adoption and integration in a variety of applications, including safety and mission-critical systems, the need for robust evaluation methods grows more urgent. This book compiles scattered information on the topic from research papers and blogs to provide a centralized resource that is accessible to students, practitioners, and researchers across the sciences. The book examines meaningful metrics for diverse types of learning paradigms and applications, unbiased estimation methods, rigorous statistical analysis, fair training sets, and meaningful explainability, all of which are essential to building robust and reliable machine learning products. In addition to standard classification, the book discusses unsupervised learning, regression, image segmentation, and anomaly detection. The book also covers topics such as industry-strength evaluation, fairness, and responsible AI. Implementations using Python and scikit-learn are available on the book's website.

Produktinformation

  • Utgivningsdatum2024-11-21
  • Mått175 x 250 x 28 mm
  • Vikt860 g
  • FormatInbunden
  • SpråkEngelska
  • Antal sidor426
  • FörlagCambridge University Press
  • ISBN9781316518861

Mer från samma författare

Du kanske också är intresserad av

Hitster - Christmas

Hitster - Christmas

Jumbo

219 kr259 kr