LTE Backhaul
Planning and Optimization
Inbunden, Engelska, 2015
Av Esa Markus Metsälä, Juha T. T. Salmelin, Esa Markus (Senior Specialist,Nokia Siemens Networks) Metsala, Juha T. T. (Nokia Siemens Networks) Salmelin, Juha T T Salmelin
1 559 kr
Produktinformation
- Utgivningsdatum2015-11-20
- Mått175 x 252 x 23 mm
- Vikt631 g
- FormatInbunden
- SpråkEngelska
- Antal sidor312
- FörlagJohn Wiley & Sons Inc
- ISBN9781118924648
Tillhör följande kategorier
Esa Metsala, Principal, Network and Transport, Nokia Networks, Finland. Esa has held different positions in Nokia, Nokia Siemens Networks and Nokia Solutions and Networks since 1990, in R&D, System and Business Management, Product Management, and Solution Management. He is currently leader of Radio Access Network system specification team for transport, and leader of a Feature screening team in Transport product management, and has been responsible for mobile backhaul system level specifications / requirements for over 10 yrs. He gives regular conference presentations on mobile transport, solution descriptions, customer presentations and has MSc Helsinki University of Technology, 1990 (Electrical Engineering, Telecommunications), MSc Helsinki School of Economics, 2008 (Business Law). Esa is Co-editor of Wiley title "Mobile Backhaul", 2012, with Juha Salmelin.Juha Salmelin, Manager, Mobile Transport, Nokia Networks, Finland. Juha began work at Nokia in 1988 and he has held a range of posts in R&D at Nokia, Nokia Siemens Networks and Nokia Solutions and Networks. He began as Asic designer of Microwave radios and continued with managing many different projects in transport product R&D. He has been team leader, department manager and Head of Technology roles in mobile backhaul products R&D including mobile backhaul e2e-solutions. He currently manages mobile backhaul in NSN Research. He has an MSc (Electrical Engineering) Helsinki University of Technology, 1988. He is Co-editor of Wiley title "Mobile Backhaul", 2012,with Esa Metsälä.
- List of Contributors xiForeword xiiiAcknowledgments xvList of Abbreviations xvii1 Introduction 1Esa Markus Metsälä and Juha T.T. Salmelin1.1 To the reader 11.2 Content 21.3 Scope 2Reference 22 LTE Backhaul 3Gerald Bedürftig, Jouko Kapanen, Esa Markus Metsälä and Juha T.T. Salmelin2.1 Introduction 32.2 LTE Backhaul Planes 52.2.1 3GPP Planes and Protocol Stacks 52.2.2 Synchronization Plane 72.2.3 Management Plane 92.2.4 Active Monitoring Plane 92.2.5 Security Control Plane 102.2.6 Control and User Plane of Additional Proprietary Applications 102.3 Radio Features of LTE and LTE‐A 112.3.1 LTE 112.3.2 LTE‐A 122.4 R equirements for LTE Backhaul (SLAs) 172.4.1 Capacity 172.4.2 Latency and Loss 182.4.3 QoS Capabilities 212.4.4 Synchronization 212.4.5 Availability 222.4.6 Security 222.4.7 Examples 232.5 Transport Services 262.6 Planning Problems 272.7 LTE Backhaul Technologies 292.7.1 Access 302.7.2 Aggregation and Backbone Network 342.8 Small Cell Backhaul 342.9 Future Radio Features Affecting Backhaul 352.9.1 Inter NodeB CoMP (eCoMP) 352.9.2 Dual Connectivity 362.9.3 Dynamic eICIC 382.10 R elated Standards and Industry Forums 392.10.1 3GPP 392.10.2 ITU‐T SG15 402.10.3 IEEE 802 402.10.4 IETF 402.10.5 MEF 402.10.6 NGMN 412.10.7 BBF 412.10.8 SCF 412.11 Operator Example 42References 423 Economic Modeling and Strategic Input for Lte Backhaul 45Gabriel Waller and Esa Markus Metsälä3.1 Introduction 453.1.1 Role of Backhaul Within Lte 463.1.2 Why and What to Model 483.2 Strategic Input for Planning 493.2.1 Physical infrastructure 493.2.2 Transmission media 503.2.3 Capacity and interfaces 503.2.4 Network technologies 513.2.5 Network topology 513.2.6 Make or buy 513.2.7 Backhaul security aspects 523.3 Quantifying benefits 533.3.1 Revenue from LTE backhaul 533.3.2 Contribution to mobile service revenue 543.3.3 Cost savings 543.4 Quantifying costs 553.4.1 Equipment purchases 553.4.2 Economic lifetime 553.4.3 Operational costs 563.4.4 Other costs 573.5 Case router 583.5.1 Cash Flow 583.5.2 Payback Period 593.5.3 Net Present Value (NPV) 613.5.4 Selection of the Interest Rate 633.5.5 Internal Rate of Return 643.5.6 Return on Investment and Further Metrics 643.6 Wireless Backhaul Case Study 663.6.1 Case Definition 663.6.2 Payback Period 683.6.3 NPV 69References 70Further Reading 714 Dimensioning Aspects and Analytical Models of LTE MBH Networks 73Csaba Vulkán and Juha T.T. Salmelin4.1 Introduction 734.2 Dimensioning Paradigm 764.3 Applications and QoE: Considerations 784.3.1 Transmission Control Protocol 794.3.2 Web Browsing 834.3.3 Video Download 854.4 Dimensioning Requirements 874.5 Traffic Models 884.5.1 Peak Load or Busy Hour Load 924.5.2 Geographic Diversity and Daily Load Profile/Distribution 934.5.3 Session Level User Behavior 954.5.4 Burst Level User Behavior 994.5.5 Packet Level Behavior 1024.5.6 Transmission Control Protocol Models 1064.6 Network models 1124.6.1 Queuing methods 1134.6.2 Fluid Network Models 1174.6.3 Network model 1184.6.4 Routing and Requirement Allocations 1194.7 Dimensioning 1224.7.1 QoS‐driven dimensioning 1224.7.2 Reliability Requirement Based Dimensioning 124References 1275 Planning and Optimizing Mobile Backhaul for LTE 129Raija Lilius, Jari Salo, José Manuel Tapia Pérez and Esa Markus Metsälä5.1 Introduction 1295.1.1 Planning and Optimization Process 1305.1.2 High‐Level Design Overview 1315.2 Backhaul Network Deployment Scenarios 1325.2.1 Connectivity Requirements 1325.2.2 Differences Between Ethernet and IP Connectivity 1335.2.3 Implications to Backhaul Scenarios 1345.2.4 Ethernet Services 1345.2.5 L3 VPN Service 1365.2.6 Scenario 1: IP Access 1375.2.7 Scenario 2: Ethernet Service in the Access 1375.3 Network Topology and Transport Media 1385.3.1 Access Network Topologies and Media 1385.3.2 Aggregation Network Topologies 1395.4 Availability and Resiliency Schemes 1395.4.1 Availability Calculation 1405.4.2 Link Resiliency and its Impact on Availability 1415.4.3 Routing Gateway Redundancy 1445.4.4 Ethernet Ring Protection (ERP) 1475.4.5 IP and MPLS Rerouting 1485.4.6 SCTP Multi‐Homing 1495.4.7 Connectivity Toward Multiple S‐GWs and MMEs 1495.4.8 Synchronization Protection 1505.4.9 OSS Resiliency 1505.4.10 End‐to‐End Performance of Multilayer Redundancy 1515.5 QoS Planning 1525.5.1 QoS in an Access Transport Node 1525.5.2 Packet Classification 1535.5.3 Scheduling 1565.5.4 Traffic Shaping 1585.5.5 Active Queue Management and Bufferbloat 1605.5.6 Connection Admission Control 1615.6 Link Bandwidth Dimensioning 1635.6.1 Obtaining Input Parameters for User Plane Bandwidth Dimensioning 1645.6.2 Obtaining Input Parameters for Control Plane Bandwidth Dimensioning 1695.6.3 Link Bandwidth Dimensioning: Single Queue 1725.6.4 Link Bandwidth Dimensioning: Multiple Queues 1805.6.5 Combining Signaling, Voice and Data Traffic 1835.6.6 Comparison of Bandwidth Dimensioning Formulas 1865.7 Dimensioning Other Traffic Types 1875.7.1 Management Traffic 1875.7.2 Synchronization Traffic 1875.7.3 Other Traffic Types 1885.8 Base Station Site Solutions 1885.9 Security Solutions 1895.9.1 Network Element Hardening 1905.9.2 Network Security High‐Level Architecture 1905.9.3 Security Gateway High Availability 1925.9.4 IPsec Parameter Planning 1965.9.5 Public Key Infrastructure (PKI) 2015.9.6 Self‐Organizing Networks (SONs) and Security 2035.10 IP Planning 2035.10.1 IP Addressing Alternatives for eNB 2045.10.2 VLAN Planning 2065.10.3 IP Addressing 2085.10.4 Dynamic Versus Static Routing 2115.10.5 Examples 2115.11 Synchronization Planning 2145.11.1 Global Navigation Satellite System (GNSS) 2155.11.2 Synchronous Ethernet (SyncE) 2155.11.3 IEEE1588 (2008) Frequency Synchronization 2185.11.4 IEEE1588 (2008) Phase Synchronization 2225.12 Self‐Organizing Networks (SON) and Management System Connectivity 2265.12.1 Planning for SON 2265.12.2 Data Communications Network (DCN) Planning for Transport Network and the Base Stations 2275.13 LTE Backhaul Optimization 2275.13.1 Introduction to LTE Backhaul Optimization 2275.13.2 Proactive Methods 2285.13.3 Reactive Methods 2315.13.4 Active vs. Passive Methods 232References 2366 Design Examples 239Jari Salo and Esa Markus Metsälä6.1 Introduction 2396.2 Scenario #1: Microwave 2396.2.1 Synchronization 2406.2.2 IP Planning 2426.2.3 Availability 2456.3 Scenario #2: Leased Line 2546.3.1 Assumptions for the Use Case 2546.3.2 Comparing Transport Providers 2546.3.3 The Solution Summary 258Reference 2587 Network Management 259Raimo Kangas and Esa Markus Metsälä7.1 Introduction 2597.2 NMS Architecture 2607.3 Fault Management 2627.4 Performance Management 2637.5 Configuration Management (CM) 2637.5.1 Maintaining an Up‐to‐Date Picture of the Network 2647.5.2 Configuration History 2647.5.3 Configuring Network 2657.5.4 Policy‐Based Configuration Management 2657.5.5 Planning Interfaces 2667.5.6 Network Configuration Discovery 2677.5.7 Configuration Management of Backhaul Network 2677.6 Optimization 2687.7 Self‐Organizing Network (SON) 2707.8 O&M Protocols 2727.8.1 SNMP 2737.8.2 NETCONF 2757.9 Planning of Network Management System 2757.9.1 Strategic Planning 2767.9.2 Analysis 2767.9.3 Design 2777.9.4 Implementation 2787.9.5 Maintenance 278References 2788 Summary 279Esa Markus Metsälä and Juha T.T. SalmelinIndex 281