Lineare Optimierung
Häftad, Tyska, 1991
599 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.11 stellt die Gesamtbearbeitungszeit dar. Sie ist zu maximieren, um den Zeitfonds so gut wie möglich auszunutzen. Somit lautet das mathematische Modell der angegebenen AufgabensteIlung: Die lineare Zielfunktion ZF: (2.1) ist unter Berücksichtigung der folgenden Nebenbedingungen zu maximieren: NB: IOxl + 10x2 < 8000, IOxl + 30x < 18000, (2.2) 2 20XI + 10x2 < 14000, Unter allen möglichen Lösungen der Nebenbedingungen ist diejenige gesucht, die die Zielfunktion maximiert. Drei mögliche Lösungen sind z. B. l. x0> = [Xl' X ] = [700,0], 2 2. x~> = [Xl' X] = [0, 600], 2 3. x0> = [Xl' X2] = [300, 500], denn werden die Zahlenwerte für Xl und X in die Nebenbedingungen eingesetzt, so 2 sind diese erfüllt. Zu XCI): NB: 10·700 + 10·0 = 7000 < 8000, 10 . 700 + 30 . 0 = 7000 < 18000, 20·700 + 10·0 = 14000 < 14000, 700 ::2 0, 0 > O. ZF: Z(xC!» = 40·700 + 50·0 = 28000. Die benötigte Gesamtbearbeitungszeit beträgt also 28000 h, wenn 700 St. vom Werk stück EI und 0 St. vom Werkstück E2 bearbeitet werden. 12000 h werden bei diesem Produktionsprogramm vom Gesamtzeitfonds nicht genutzt. Gegenüber der Lösung X(l) ist die Lösung X(2) besser, da bei ihr nur 10000 h vom Gesamtzeitfonds ungenutzt bleiben, bzw. 30000 h genutzt werden. Die Lösung X(3) ist weit besser als die beiden vorhergehenden, da bei ihr nur noch 3000 h ungenutzt bleiben und 37000 h genutzt werden.
Produktinformation
- Utgivningsdatum1991-03-01
- Mått170 x 244 x 11 mm
- Vikt349 g
- SpråkTyska
- SerieMathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte
- Antal sidor192
- Upplaga5
- FörlagSpringer-Verlag Berlin and Heidelberg GmbH & Co. KG
- EAN9783322004727