Least Squares Support Vector Machines
Inbunden, Engelska, 2002
Av Johan A K Suykens, Tony Van Gestel, Joseph De Brabanter, Bart De Moor, Joos P L Vandewalle, Belgium) Suykens, Johan A K (Katholieke Univ Leuven, Belgium) Van Gestel, Tony (Risk Management - Dexia Group, Belgium) De Brabanter, Joseph (Katholieke Univ Leuven, Belgium) De Moor, Bart (Katholieke Univ Leuven, Belgium) Vandewalle, Joos P L (Katholieke Univ Leuven, Johan A. K. Suykens, SUYKENS JOHAN A K, Suykens Johan A K
2 039 kr
Beställningsvara. Skickas inom 3-6 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.
Produktinformation
- Utgivningsdatum2002-11-14
- Mått160 x 234 x 21 mm
- Vikt588 g
- FormatInbunden
- SpråkEngelska
- Antal sidor308
- FörlagWorld Scientific Publishing Co Pte Ltd
- ISBN9789812381514