Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
Häftad, Engelska, 2016
1 279 kr
Tillfälligt slut
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable $t$-independent coefficients in spaces of fractional smoothness, in Besov and weighted $L^p$ classes. The authors establish:(1) Mapping properties for the double and single layer potentials, as well as the Newton potential(2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given $L^p$ space automatically assures their solvability in an extended range of Besov spaces(3) Well-posedness for the non-homogeneous boundary value problems.In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.
Produktinformation
- Utgivningsdatum2016-09-01
- Mått178 x 254 x undefined mm
- Vikt189 g
- FormatHäftad
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- FörlagAmerican Mathematical Society
- ISBN9781470419899