Kittel's Introduction to Solid State Physics, Global Edition
Häftad, Engelska, 2018
Av Charles Kittel, Berkeley) Kittel, Charles (University of California
769 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.Kittel’s Introduction to Solid State Physics, Global Edition, has been the standard solid state physics text for physics majors since the publication of its first edition over 60 years ago. The emphasis in the book has always been on physics rather than formal mathematics. This book is written with the goal that it is accessible to undergraduate students and consistently teachable. With each new edition, the author has attempted to add important new developments in the field without impacting its inherent content coverage. This Global Edition offers the advantage of expanded end-of-chapter problem sets.
Produktinformation
- Utgivningsdatum2018-07-09
- Mått10 x 10 x 10 mm
- Vikt454 g
- SpråkEngelska
- Antal sidor720
- Upplaga8
- FörlagJohn Wiley & Sons Inc
- EAN9781119454168
Tillhör följande kategorier
- Chapter 1: Crystal Structure 1Periodic Arrays of Atoms 3Lattice Translation Vectors 4Basis and the Crystal Structure 5Primitive Lattice Cell 6Fundamental Types of Lattices 6Two-Dimensional Lattice Types 8Three-Dimensional Lattice Types 9Index Systems for Crystal Planes 11Simple Crystal Structures 13Sodium Chloride Structure 13Cesium Chloride Structure 14Hexagonal Close-Packed Structure (hcp) 15Diamond Structure 16Cubic Zinc Sulfide Structure 17Direct Imaging of Atomic Structure 18Nonideal Crystal Structures 18Random Stacking and Polytypism 19Crystal Structure Data 19Summary 22Problems 22Chapter 2: Wave Diffraction And The Reciprocal Lattice 25Diffraction of Waves by Crystals 27The Bragg Law 27Scattered Wave Amplitude 28Fourier Analysis 29Reciprocal Lattice Vectors 31Diffraction Conditions 32Laue Equations 34Brillouin Zones 35Reciprocal Lattice to sc Lattice 36Reciprocal Lattice to bcc Lattice 38Reciprocal Lattice to fcc Lattice 39Fourier Analysis of the Basis 41Structure Factor of the bcc Lattice 42Structure Factor of the fcc Lattice 42Atomic Form Factor 43Summary 45Problems 45Chapter 3: Crystal Binding And Elastic Constants 49Crystals of Inert Gases 51Van der Waals–London Interaction 55Repulsive Interaction 58Equilibrium Lattice Constants 60Cohesive Energy 61Ionic Crystals 62Electrostatic or Madelung Energy 62Evaluation of the Madelung Constant 66Covalent Crystals 69Metals 71Hydrogen Bonds 72Atomic Radii 72Ionic Crystal Radii 74Analysis of Elastic Strains 75Dilation 77Stress Components 77Elastic Compliance and Stiffness Constants 79Elastic Energy Density 79Elastic Stiffness Constants of Cubic Crystals 80Bulk Modulus and Compressibility 82Elastic Waves in Cubic Crystals 82Waves in the [100] Direction 83Waves in the [110] Direction 84Summary 87Problems 87Chapter 4: phonons I. Crystal vibrations 91Vibrations of Crystals with Monatomic Basis 93First Brillouin Zone 95Group Velocity 96Long Wavelength Limit 96Derivation of Force Constants from Experiment 96Two Atoms per Primitive Basis 97Quantization of Elastic Waves 101Phonon Momentum 102Inelastic Scattering by Phonons 102Summary 104Problems 104Chapter 5: phonons 11. Thermal properties 107Phonon Heat Capacity 109Planck Distribution 109Normal Mode Enumeration 110Density of States in One Dimension 110Density of States in Three Dimensions 113Debye Model for Density of States 114Debye T3 Law 116Einstein Model of the Density of States 116General Result for D( ) 119Anharmonic Crystal Interactions 121Thermal Expansion 122Thermal Conductivity 123Thermal Resistivity of Phonon Gas 125Umklapp Processes 127Imperfections 128Problems 130Chapter 6: Free Electron Fermi Gas 133Energy Levels in One Dimension 136Effect of Temperature on the FermiDirac Distribution 138Free Electron Gas in Three Dimensions 139Heat Capacity of the Electron Gas 143Experimental Heat Capacity of Metals 147Heavy Fermions 149Electrical Conductivity and Ohm’s Law 149Experimental Electrical Resistivity of Metals 150Umklapp Scattering 153Motion in Magnetic Fields 154Hall Effect 155Thermal Conductivity of Metals 158Ratio of Thermal to Electrical Conductivity 158Problems 159Chapter 7: Energy Bands 163Nearly Free Electron Model 166Origin of the Energy Gap 167Magnitude of the Energy Gap 169Bloch Functions 169Kronig-Penney Model 170Wave Equation of Electron in a Periodic Potential 171Restatement of the Bloch Theorem 175Crystal Momentum of an Electron 175Solution of the Central Equation 176Kronig-Penney Model in Reciprocal Space 176Empty Lattice Approximation 178Approximate Solution Near a Zone Boundary 179Number of Orbitals in a Band 182Metals and Insulators 183Summary 184Problems 184Chapter 8: Semiconductor Crystals 187Band Gap 189Equations of Motion 193Physical Derivation of 195Holes 196Effective Mass 199Physical Interpretation of the Effective Mass 200Effective Masses in Semiconductors 202Silicon and Germanium 204Intrinsic Carrier Concentration 207Intrinsic Mobility 210Impurity Conductivity 211Donor States 211Acceptor States 213Thermal Ionization of Donors and Acceptors 215Thermoelectric Effects 216Semimetals 217Superlattices 218Bloch Oscillator 219Zener Tunneling 219Summary 219Problems 220Chapter 9: Fermi Surfaces And Metals 223Reduced Zone Scheme 225Periodic Zone Scheme 227Construction of Fermi Surfaces 228Nearly Free Electrons 230Electron Orbits, Hole Orbits, and Open Orbits 232Calculation of Energy Bands 234Tight Binding Method for Energy Bands 234Wigner-Seitz Method 238Cohesive Energy 239Pseudopotential Methods 241Experimental Methods in Fermi Surface Studies 244Quantization of Orbits in a Magnetic Field 244De Haas-van Alphen Effect 246Extremal Orbits 250Fermi Surface of Copper 251Magnetic Breakdown 253Summary 254Problems 254Chapter 10: Superconductivity 259Experimental Survey 261Occurrence of Superconductivity 262Destruction of Superconductivity by Magnetic Fields 264Meissner Effect 264Heat Capacity 266Energy Gap 268Microwave and Infrared Properties 270Isotope Effect 271Theoretical Survey 272Thermodynamics of the Superconducting Transition 272London Equation 275Coherence Length 278BCS Theory of Superconductivity 279BCS Ground State 280Flux Quantization in a Superconducting Ring 281Duration of Persistent Currents 284Type II Superconductors 285Vortex State 286Estimation of Hc1 and Hc2 286Single Particle Tunneling 289Josephson Superconductor Tunneling 291Dc Josephson Effect 291Ac Josephson Effect 292Macroscopic Quantum Interference 294High-Temperature Superconductors 295Summary 296Problems 296Reference 298Chapter 11: Diamagnetism And Paramagnetism 299Langevin Diamagnetism Equation 301Quantum Theory of Diamagnetism of Mononuclear Systems 303Paramagnetism 304Quantum Theory of Paramagnetism 304Rare Earth Ions 307Hund Rules 308Iron Group Ions 309Crystal Field Splitting 309Quenching of the Orbital Angular Momentum 310Spectroscopic Splitting Factor 313Van Vleck Temperature-Independent Paramagnetism 313Cooling by Isentropic Demagnetization 314Nuclear Demagnetization 316Paramagnetic Susceptibility of Conduction Electrons 317Summary 319Problems 320Chapter 12: Ferromagnetism And Antiferromagnetism 323Ferromagnetic Order 325Curie Point and the Exchange Integral 325Temperature Dependence of the SaturationMagnetization 328Saturation Magnetization at Absolute Zero 330Magnons 332Quantization of Spin Waves 335Thermal Excitation of Magnons 336Neutron Magnetic Scattering 337Ferrimagnetic Order 338Curie Temperature and Susceptibility of Ferrimagnets 340Iron Garnets 341Antiferromagnetic Order 342Susceptibility Below the Néel Temperature 345Antiferromagnetic Magnons 346Ferromagnetic Domains 348Anisotropy Energy 350Transition Region Between Domains 351Origin of Domains 353Coercivity and Hysteresis 354Single-Domain Particles 356Geomagnetism and Biomagnetism 357Magnetic Force Microscopy 357Summary 359Problems 359Chapter 13: Magnetic Resonance 363Nuclear Magnetic Resonance 365Equations of Motion 368Line Width 372Motional Narrowing 373Hyperfine Splitting 375Examples: Paramagnetic Point Defects 377F Centers in Alkali Halides 378Donor Atoms in Silicon 378Knight Shift 379Nuclear Quadrupole Resonance 381Ferromagnetic Resonance 381Shape Effects in FMR 382Spin Wave Resonance 384Antiferromagnetic Resonance 385Electron Paramagnetic Resonance 388Exchange Narrowing 388Zero-field Splitting 388Principle of Maser Action 388Three-Level Maser 390Lasers 391Summary 392Problems 393Chapter 14: Dielectrics And Ferroelectrics 395Maxwell Equations 397Polarization 397Macroscopic Electric Field 398Depolarization Field, E1 400Local Electric Field at an Atom 402Lorentz Field, E2 404Field of Dipoles Inside Cavity, E3 404Dielectric Constant and Polarizability 405Electronic Polarizability 406Classical Theory of Electronic Polarizability 408Structural Phase Transitions 409Ferroelectric Crystals 409Classification of Ferroelectric Crystals 411Displacive Transitions 413Soft Optical Phonons 415Landau Theory of the Phase Transition 416Second-Order Transition 417First-Order Transition 419Antiferroelectricity 421Ferroelectric Domains 421Piezoelectricity 423Summary 424Problems 425Chapter 15: Plasmons, Polaritons, And Polarons 429Dielectric Function of the Electron Gas 431Definitions of the Dielectric Function 431Plasma Optics 432Dispersion Relation for Electromagnetic Waves 433Transverse Optical Modes in a Plasma 434Transparency of Metals in the Ultraviolet 434Longitudinal Plasma Oscillations 434Plasmons 437Electrostatic Screening 439Screened Coulomb Potential 442Pseudopotential Component U(0) 443Mott Metal-Insulator Transition 443Screening and Phonons in Metals 445Polaritons 446LST Relation 450Electron-Electron Interaction 453Fermi Liquid 453Electron-Electron Collisions 453Electron-Phonon Interaction:Polarons 456Peierls Instability of LinearMetals 458Summary 460Problems 460Chapter 16: Optical Processes And Excitons 465Optical Reflectance 467Kramers-Kronig Relations 468Mathematical Note 470Example: Conductivity of Collisionless Electron Gas 471Electronic Interband Transitions 472Excitons 473Frenkel Excitons 475Alkali Halides 478Molecular Crystals 478Weakly Bound (Mott-Wannier) Excitons 479Exciton Condensation into Electron-Hole Drops (EHD) 479Raman Effect in Crystals 482Electron Spectroscopy with X-Rays 485Energy Loss of Fast Particles in a Solid 486Summary 487Problems 488Chapter 17: Surface And Interface Physics 491Reconstruction and Relaxation 493Surface Crystallography 494Reflection High-Energy Electron Diffraction 497Surface Electronic Structure 498Work Function 498Thermionic Emission 499Surface States 499Tangential Surface Transport 501Magnetoresistance in a Two-Dimensional Channel 502Integral Quantized Hall Effect (IQHE) 503IQHE in Real Systems 504Fractional Quantized Hall Effect (FQHE) 507p-n Junctions 507Rectification 508Solar Cells and Photovoltaic Detectors 510Schottky Barrier 510Heterostructures 511n-N Heterojunction 512Semiconductor Lasers 514Light-Emitting Diodes 515Problems 517Chapter 18: Nanostructures 521Imaging Techniques for Nanostructures 525Electron Microscopy 526Optical Microscopy 527Scanning Tunneling Microscopy 529Atomic Force Microscopy 532Electronic Structure of 1D Systems 534One-dimensional (1D) Subbands 534Spectroscopy of Van Hove Singularities 5351D Metals—Coulomb Interactions and Lattice Couplings 537Electrical Transport in 1D 539Conductance Quantization and the Landauer Formula 539Two Barriers in Series-Resonant Tunneling 542Incoherent Addition and Ohm’s Law 544Localization 545Voltage Probes and the Büttiker-Landauer Formalism 546Electronic Structure of 0D Systems 551Quantized Energy Levels 551Semiconductor Nanocrystals 551Metallic Dots 553Discrete Charge States 555Electrical Transport in 0D 557Coulomb Oscillations 557Spin, Mott Insulators, and the Kondo Effect 560Cooper Pairing in Superconducting Dots 562Vibrational and Thermal Properties 563Quantized Vibrational Modes 563Transverse Vibrations 565Heat Capacity and Thermal Transport 567Summary 568Problems 568Chapter 19: Noncrystalline Solids 573Diffraction Pattern 575Monatomic Amorphous Materials 576Radial Distribution Function 577Structure of Vitreous Silica, SiO2 578Glasses 581Viscosity and the Hopping Rate 582Amorphous Ferromagnets 583Amorphous Semiconductors 585Low Energy Excitations in Amorphous Solids 586Heat Capacity Calculation 586Thermal Conductivity 587Fiber Optics 589Rayleigh Attenuation 590Problems 590Chapter 20: Point Defects 593Lattice Vacancies 595Diffusion 598Metals 601Color Centers 602F Centers 602Other Centers in Alkali Halides 603Problems 605Chapter 21: Dislocations 607Shear Strength of Single Crystals 609Slip 610Dislocations 611Burgers Vectors 614Stress Fields of Dislocations 615Low-angle Grain Boundaries 617Dislocation Densities 620Dislocation Multiplication and Slip 621Strength of Alloys 623Dislocations and Crystal Growth 625Whiskers 626Hardness of Materials 627Problems 628Chapter 22: Alloys 631General Considerations 633Substitutional Solid Solutions— Hume-Rothery Rules 636Order-Disorder Transformation 639Elementary Theory of Order 641Phase Diagrams 644Eutectics 644Transition Metal Alloys 646Electrical Conductivity 648Kondo Effect 649Problems 652Appendix A: Temperature Dependence Of The Reflection Lines 653Appendix B: Ewald Calculation Of Lattice Sums 656Ewald-Kornfeld Method for Lattice Sums for Dipole Arrays 659Appendix C: Quantization Of Elastic Waves: Phonons 660Phonon Coordinates 661Creation and Annihilation Operators 663Appendix D: Fermi-Dirac Distribution Function 664Appendix E: Derivation Of The Dk/Dt Equation 667Appendix F: Boltzmann Transport Equation 668Particle Diffusion 669Classical Distribution 670Fermi-Dirac Distribution 671Electrical Conductivity 673Appendix G: Vector Potential, Field Momentum, And Gauge Transformations 673Lagrangian Equations of Motion 674Derivation of the Hamiltonian 675Field Momentum 675Gauge Transformation 676Gauge in the London Equation 677Appendix H: Cooper Pairs 677Appendix I: Ginzburg-Landau Equation 679Appendix J: Electron-Phonon Collisions 683Index 687