'This book is a timely addition to the basic literature in this emerging field, given the recent huge surge in interest (and funding) the area. It is a text that graduate students starting out in graphene or carbon nanotubes should buy. The theoretical background and survey of important literature will provide an excellent grounding and reference for people entering the field. The book is visually attractive with clear diagrams. The style is rigorous but approachable and the content assumes basic undergraduate physics. I found the book to be accessible to those with a chemistry background too. It is pitched at the right level for research students or final year undergraduates in the physical sciences. There are two main areas of content: (1) theoretical background; (2) preparation and applications of these materials. On the theoretical side, I found the coverage of metallicity in nanotubes particularly appealing. For a chemist, the synthesis sections are very interesting and well described. These would fit well into a course about carbon nanotubes. Similarly, the chapter on the functionalisation of graphene is appealing. I enjoyed the rigorous but readable style. This text will complement many higher-level lecture courses and research projects.'—Dr Timothy J Prior, Lecturer in Chemistry, University of Hull"In this easy-to-follow textbook, the authors bring the exciting science of carbon nanostructures, from fullerenes to nanotubes and graphene, down to the level of senior undergraduate students. Having evolved from a University course on the same topic, this book builds up on basic understanding of physical phenomena, which science students typically acquire in the first two semesters, and a basic knowledge of quantum mechanics. Graphene turns out to be especially suitable for the introduction of concepts such as direct and reciprocal lattice, electronic and phonon band structure and density of states. The authors introduce the molecular orbital and tight-binding formalism as a basis to determine the electronic structure and provide a basic understanding of sp^1, sp^2 and sp^3 hybridization in different carbon allotropes. The reader is guided to develop an intuitive understanding of the role of p_pi electrons, which dominate the electronic response of graphitic nanostructures and that make graphene an unusual semi-metal, for what is special about the Dirac point and valleys in its band structure, the meaning of the chiral index and its role in the metallic or semiconducting nature of carbon nanotubes. Studying various aspects of graphene and nanotubes, the students gradually develop an appreciation for concepts underlying much of condensed matter physics and physical chemistry.Since the authors are active researchers in the field, they provide useful insight into important topics including structural characterization by atomic-resolution transmission electron microscopy, X-ray as well as electron diffraction. They explain the effect of chemical modification of carbon allotropes and why studying the vibrational structure by Raman spectroscopy provides crucial information not only about particular nanostructures, but also about their quality. The readers learn about the advantages and disadvantages of methods to synthesize or exfoliate graphene and to synthesize nanotubes, including recent advances in synthesizing nanotubes with a specific chiral index. A chapter about recent developments, which rounds up this textbook, shows the reasons why this research field is still very active"—David Tomanek, Michigan State University